intel.

Intel® 64 and 1A-32 Architectures
Software Developer’s Manual

Documentation Changes

May 2018

Notice: The Intel® 64 and IA-32 architectures may contain design defects or errors known as errata
that may cause the product to deviate from published specifications. Current characterized errata are
documented in the specification updates.

Document Number: 252046-059

Intel technologies features and benefits depend on system configuration and may require enabled hardware, software, or service
activation. Learn more at intel.com, or from the OEM or retailer.

No computer system can be absolutely secure. Intel does not assume any liability for lost or stolen data or systems or any damages
resulting from such losses.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted
which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

The products described may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

This document contains information on products, services and/or processes in development. All information provided here is sub-
ject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained
by calling 1-800-548-4725, or by visiting http://www.intel.com/design/literature.htm.

Intel, the Intel logo, Intel Atom, Intel Core, Intel SpeedStep, MMX, Pentium, VTune, and Xeon are trademarks of Intel Corporation
in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 1997-2018, Intel Corporation. All Rights Reserved.

2 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm

Contents

ReVisSion HiStory o oo e e e
Preface. e e e e e
Summary Tablesof Changest

Documentation Changes.o it it i e e

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

"] ®
l n tel Revision History

Revision History

Revision Description Date
-001 o Initial release November 2002
e Added 1-10 Documentation Changes.
-002 ¢ Removed old Documentation Changes items that already have been December 2002
incorporated in the published Software Developer’s manual
e Added 9 -17 Documentation Changes.
e Removed Documentation Change #6 - References to bits Gen and Len
-003 Deleted. February 2003
e Removed Documentation Change #4 - VIF Information Added to CLI
Discussion
e Removed Documentation changes 1-17.
004 o Added Documentation changes 1-24. June 2003
e Removed Documentation Changes 1-24.
005 e Added Documentation Changes 1-15. September 2003
-006 e Added Documentation Changes 16- 34. November 2003
e Updated Documentation changes 14, 16, 17, and 28.
007 e Added Documentation Changes 35-45. January 2004
e Removed Documentation Changes 1-45.
008 e Added Documentation Changes 1-5. March 2004
-009 e Added Documentation Changes 7-27. May 2004
e Removed Documentation Changes 1-27.
010 e Added Documentation Changes 1. August 2004
-011 e Added Documentation Changes 2-28. November 2004
¢ Removed Documentation Changes 1-28.
012 e Added Documentation Changes 1-16. March 2005
e Updated title.
-013 e There are no Documentation Changes for this revision of the July 2005
document.
-014 e Added Documentation Changes 1-21. September 2005
e Removed Documentation Changes 1-21.
015 e Added Documentation Changes 1-20. March 9, 2006
-016 ¢ Added Documentation changes 21-23. March 27, 2006
e Removed Documentation Changes 1-23.
017 e Added Documentation Changes 1-36. September 2006
-018 e Added Documentation Changes 37-42. October 2006
e Removed Documentation Changes 1-42.
019 e Added Documentation Changes 1-19. March 2007
-020 ¢ Added Documentation Changes 20-27. May 2007
e Removed Documentation Changes 1-27.
021 e Added Documentation Changes 1-6 November 2007
e Removed Documentation Changes 1-6
022 e Added Documentation Changes 1-6 August 2008
e Removed Documentation Changes 1-6
023 e Added Documentation Changes 1-21 March 2009

4 Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Revision History

intel.

Revision Description Date
032 | e Documentation Changes 114 May 2011
-047 Removed Documentation Changes 1-25 June 2015

Add Documentation Changes 1-19

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

ntel.

Revision History

Revision Description Date
059 Removed Documentation Changes 1-17 May 2018

Add Documentation Changes 1-24

8

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

Preface

This document is an update to the specifications contained in the Affected Documents table below. This
document is a compilation of device and documentation errata, specification clarifications and changes. It is
intended for hardware system manufacturers and software developers of applications, operating systems, or
tools.

Affected Documents

Document Title Document Number/
Location
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1: Basic Architecture 253665
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A: Instruction Set
253666
Reference, A-L
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B: Instruction Set
253667
Reference, M-U
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2C: Instruction Set
326018
Reference, V-Z
Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 2D: Instruction Set 334569
Reference
Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A: System
- . 253668
Programming Guide, Part 1
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3B: System
- . 253669
Programming Guide, Part 2
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3C: System
- . 326019
Programming Guide, Part 3
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3D: System
- . 332831
Programming Guide, Part 4
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 4: Model Specific 335592
Registers
Nomenclature

Documentation Changes include typos, errors, or omissions from the current published specifications. These
will be incorporated in any new release of the specification.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 7

Summary Tables of Changes

The following table indicates documentation changes which apply to the Intel® 64 and IA-32 architectures. This
table uses the following notations:

Codes Used in Summary Tables

Change bar to left of table row indicates this erratum is either new or modified from the previous version of the
document.

Documentation Changes

No. DOCUMENTATION CHANGES
1 Updates to Chapter 6, Volume 1
2 Updates to Chapter 13, Volume 1
3 Updates to Chapter 16, Volume 1
4 Updates to Chapter 3, Volume 2A
5 Updates to Chapter 4, Volume 2B
6 Updates to Appendix A, Volume 2D
7 Updates to Chapter 2, Volume 3A
8 Updates to Chapter 3, Volume 3A
9 Updates to Chapter 6, Volume 3A
10 Updates to Chapter 7, Volume 3A
11 Updates to Chapter 17, Volume 3B
12 Updates to Chapter 18, Volume 3B
13 Updates to Chapter 24, Volume 3B
14 Updates to Chapter 25, Volume 3C
15 Updates to Chapter 26, Volume 3C
16 Updates to Chapter 27, Volume 3C
17 Updates to Chapter 34, Volume 3C
18 Updates to Chapter 35, Volume 3C
19 Updates to Chapter 37, Volume 3D
20 Updates to Chapter 38, Volume 3D
21 Updates to Chapter 39, Volume 3D
22 Updates to Chapter 40, Volume 3D
23 Updates to Chapter 42, Volume 3D
24 Updates to Appendix C, Volume 3D

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 8

Documentation Changes

Changes to the Intel® 64 and IA-32 Architectures Software Developer’s Manual volumes follow, and are listed
by chapter. Only chapters with changes are included in this document.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes

10

1. Updates to Chapter 6, Volume 1

Change bars show changes to Chapter 6 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 1: Basic Architecture.

Change to this chapter: Update to Table 6-1 “Exceptions and Interrupts”. Updates to Section 6.4.4 “INT n, INTO,
INT3, INT1, and BOUND Instructions”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 29

CHAPTER 6
PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

This chapter describes the facilities in the Intel 64 and IA-32 architectures for executing calls to procedures or
subroutines. It also describes how interrupts and exceptions are handled from the perspective of an application
programmer.

6.1 PROCEDURE CALL TYPES

The processor supports procedure calls in the following two different ways:
® CALL and RET instructions.

® ENTER and LEAVE instructions, in conjunction with the CALL and RET
instructions.

Both of these procedure call mechanisms use the procedure stack, commonly referred to simply as “the stack,” to
save the state of the calling procedure, pass parameters to the called procedure, and store local variables for the
currently executing procedure.

The processor’s facilities for handling interrupts and exceptions are similar to those used by the CALL and RET
instructions.

6.2 STACKS

The stack (see Figure 6-1) is a contiguous array of memory locations. It is contained in a segment and identified by
the segment selector in the SS register. When using the flat memory model, the stack can be located anywhere in
the linear address space for the program. A stack can be up to 4 GBytes long, the maximum size of a segment.

Items are placed on the stack using the PUSH instruction and removed from the stack using the POP instruction.
When an item is pushed onto the stack, the processor decrements the ESP register, then writes the item at the new
top of stack. When an item is popped off the stack, the processor reads the item from the top of stack, then incre-
ments the ESP register. In this manner, the stack grows down in memory (towards lesser addresses) when items
are pushed on the stack and shrinks up (towards greater addresses) when the items are popped from the stack.

A program or operating system/executive can set up many stacks. For example, in multitasking systems, each task
can be given its own stack. The number of stacks in a system is limited by the maximum number of segments and
the available physical memory.

When a system sets up many stacks, only one stack—the current stack—is available at a time. The current stack
is the one contained in the segment referenced by the SS register.

Vol. T 6-1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Segment
Bottom of Stack
(Initial ESP Value)
Local Variables
R:)S:grrg The Stack Can Be
| 16 or 32 Bits Wide
Parameters
Passed to The EBP register is
Called typically set to point
Procedure to the return
‘ instruction pointer.
Frame Boundary Return Instruct
eturn Instruction :
Pointer 4—{ EBP Register ‘
4—{ ESP Register ‘
Top of Stack

Pushes Move the Pops Move the
Top Of Stack to Top Of Stack to
Lower Addresses Higher Addresses

Figure 6-1. Stack Structure

The processor references the SS register automatically for all stack operations. For example, when the ESP register
is used as a memory address, it automatically points to an address in the current stack. Also, the CALL, RET, PUSH,
POP, ENTER, and LEAVE instructions all perform operations on the current stack.

6.2.1 Setting Up a Stack

To set a stack and establish it as the current stack, the program or operating system/executive must do the
following:

1. Establish a stack segment.
2. Load the segment selector for the stack segment into the SS register using a MOV, POP, or LSS instruction.

3. Load the stack pointer for the stack into the ESP register using a MOV, POP, or LSS instruction. The LSS
instruction can be used to load the SS and ESP registers in one operation.

See “"Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of the Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 3A, for information on how to set up a segment descriptor and
segment limits for a stack segment.

6.2.2 Stack Alignment

The stack pointer for a stack segment should be aligned on 16-bit (word) or 32-bit (double-word) boundaries,
depending on the width of the stack segment. The D flag in the segment descriptor for the current code segment
sets the stack-segment width (see "Segment Descriptors” in Chapter 3, “Protected-Mode Memory Management,” of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A). The PUSH and POP instructions
use the D flag to determine how much to decrement or increment the stack pointer on a push or pop operation,
respectively. When the stack width is 16 bits, the stack pointer is incremented or decremented in 16-bit increments;
when the width is 32 bits, the stack pointer is incremented or decremented in 32-bit increments. Pushing a 16-bit
value onto a 32-bit wide stack can result in stack misaligned (that is, the stack pointer is not aligned on a double-

6-2 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

word boundary). One exception to this rule is when the contents of a segment register (a 16-bit segment selector)
are pushed onto a 32-bit wide stack. Here, the processor automatically aligns the stack pointer to the next 32-bit
boundary.

The processor does not check stack pointer alignment. It is the responsibility of the programs, tasks, and system
procedures running on the processor to maintain proper alignment of stack pointers. Misaligning a stack pointer
can cause serious performance degradation and in some instances program failures.

6.2.3 Address-Size Attributes for Stack Accesses

Instructions that use the stack implicitly (such as the PUSH and POP instructions) have two address-size attributes
each of either 16 or 32 bits. This is because they always have the implicit address of the top of the stack, and they
may also have an explicit memory address (for example, PUSH Array1[EBX]). The attribute of the explicit address
is determined by the D flag of the current code segment and the presence or absence of the 67H address-size
prefix.

The address-size attribute of the top of the stack determines whether SP or ESP is used for the stack access. Stack
operations with an address-size attribute of 16 use the 16-bit SP stack pointer register and can use a maximum
stack address of FFFFH; stack operations with an address-size attribute of 32 bits use the 32-bit ESP register and
can use a maximum address of FFFFFFFFH. The default address-size attribute for data segments used as stacks is
controlled by the B flag of the segment’s descriptor. When this flag is clear, the default address-size attribute is 16;
when the flag is set, the address-size attribute is 32.

6.2.4 Procedure Linking Information

The processor provides two pointers for linking of procedures: the stack-frame base pointer and the return instruc-
tion pointer. When used in conjunction with a standard software procedure-call technique, these pointers permit
reliable and coherent linking of procedures.

6.2.4.1 Stack-Frame Base Pointer

The stack is typically divided into frames. Each stack frame can then contain local variables, parameters to be
passed to another procedure, and procedure linking information. The stack-frame base pointer (contained in the
EBP register) identifies a fixed reference point within the stack frame for the called procedure. To use the stack-
frame base pointer, the called procedure typically copies the contents of the ESP register into the EBP register prior
to pushing any local variables on the stack. The stack-frame base pointer then permits easy access to data struc-
tures passed on the stack, to the return instruction pointer, and to local variables added to the stack by the called
procedure.

Like the ESP register, the EBP register automatically points to an address in the current stack segment (that is, the
segment specified by the current contents of the SS register).

6.2.4.2 Return Instruction Pointer

Prior to branching to the first instruction of the called procedure, the CALL instruction pushes the address in the EIP
register onto the current stack. This address is then called the return-instruction pointer and it points to the
instruction where execution of the calling procedure should resume following a return from the called procedure.
Upon returning from a called procedure, the RET instruction pops the return-instruction pointer from the stack back
into the EIP register. Execution of the calling procedure then resumes.

The processor does not keep track of the location of the return-instruction pointer. It is thus up to the programmer
to insure that stack pointer is pointing to the return-instruction pointer on the stack, prior to issuing a RET instruc-
tion. A common way to reset the stack pointer to the point to the return-instruction pointer is to move the contents
of the EBP register into the ESP register. If the EBP register is loaded with the stack pointer immediately following
a procedure call, it should point to the return instruction pointer on the stack.

The processor does not require that the return instruction pointer point back to the calling procedure. Prior to
executing the RET instruction, the return instruction pointer can be manipulated in software to point to any address

Vol. 1T 6-3

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

in the current code segment (near return) or another code segment (far return). Performing such an operation,
however, should be undertaken very cautiously, using only well defined code entry points.

6.2.5 Stack Behavior in 64-Bit Mode

In 64-bit mode, address calculations that reference SS segments are treated as if the segment base is zero. Fields
(base, limit, and attribute) in segment descriptor registers are ignored. SS DPL is modified such that it is always
equal to CPL. This will be true even if it is the only field in the SS descriptor that is modified.

Registers E(SP), E(IP) and E(BP) are promoted to 64-bits and are re-named RSP, RIP, and RBP respectively. Some
forms of segment load instructions are invalid (for example, LDS, POP ES).

PUSH/POP instructions increment/decrement the stack using a 64-bit width. When the contents of a segment
register is pushed onto 64-bit stack, the pointer is automatically aligned to 64 bits (as with a stack that has a 32-
bit width).

6.3 CALLING PROCEDURES USING CALL AND RET

The CALL instruction allows control transfers to procedures within the current code segment (near call) and in a
different code segment (far call). Near calls usually provide access to local procedures within the currently running
program or task. Far calls are usually used to access operating system procedures or procedures in a different task.
See “"CALL—Call Procedure” in Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 2A, for a detailed description of the CALL instruction.

The RET instruction also allows near and far returns to match the near and far versions of the CALL instruction. In
addition, the RET instruction allows a program to increment the stack pointer on a return to release parameters
from the stack. The nhumber of bytes released from the stack is determined by an optional argument (n) to the RET
instruction. See "RET—Return from Procedure” in Chapter 4, “Instruction Set Reference, M-U,” of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2B, for a detailed description of the RET instruction.

6.3.1 Near CALL and RET Operation

When executing a near call, the processor does the following (see Figure 6-2):
1. Pushes the current value of the EIP register on the stack.

2. Loads the offset of the called procedure in the EIP register.

3. Begins execution of the called procedure.

When executing a near return, the processor performs these actions:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.

2. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack.

3. Resumes execution of the calling procedure.

6.3.2 Far CALL and RET Operation

When executing a far call, the processor performs these actions (see Figure 6-2):

Pushes the current value of the CS register on the stack.

Pushes the current value of the EIP register on the stack.

Loads the segment selector of the segment that contains the called procedure in the CS register.

Loads the offset of the called procedure in the EIP register.

u A W N

Begins execution of the called procedure.

6-4 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

When executing a far return, the processor does the following:
1. Pops the top-of-stack value (the return instruction pointer) into the EIP register.
2. Pops the top-of-stack value (the segment selector for the code segment being returned to) into the CS register.

3. If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack.

4. Resumes execution of the calling procedure.

Stack During Stack During

Far Call
Ei?‘ri:e Near Call Stack
Before E';g:.ee
Call Param 1 Call Param 1
Param 2 Param 2
Param 3 ~<— ESP Before Call Param 3 ~<— ESP Before Call
Stack Calling EIP ~<«— ESP After Call Calling CS
Frame£ Stack Calling EIP |<«— ESP After Call
After Frame
Call After
. Call
Stack During Stack During
Near Return Far Return
~«— ESP After Return ~<<—ESP After Return
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3
Calling EIP |<«— ESP Before Return Calling CS
—>»| Calling EIP |[<<—ESP Before Return

Note: On a near or far return, parameters are
released from the stack based on the
optional n operand in the RET n instruction.

Figure 6-2. Stack on Near and Far Calls

6.3.3 Parameter Passing

Parameters can be passed between procedures in any of three ways: through general-purpose registers, in an
argument list, or on the stack.

6.3.3.1 Passing Parameters Through the General-Purpose Registers

The processor does not save the state of the general-purpose registers on procedure calls. A calling procedure can
thus pass up to six parameters to the called procedure by copying the parameters into any of these registers
(except the ESP and EBP registers) prior to executing the CALL instruction. The called procedure can likewise pass
parameters back to the calling procedure through general-purpose registers.

6.3.3.2

To pass a large number of parameters to the called procedure, the parameters can be placed on the stack, in the
stack frame for the calling procedure. Here, it is useful to use the stack-frame base pointer (in the EBP register) to
make a frame boundary for easy access to the parameters.

Passing Parameters on the Stack

The stack can also be used to pass parameters back from the called procedure to the calling procedure.

Vol. 1T 6-5

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.3.3.3 Passing Parameters in an Argument List

An alternate method of passing a larger number of parameters (or a data structure) to the called procedure is to
place the parameters in an argument list in one of the data segments in memory. A pointer to the argument list can
then be passed to the called procedure through a general-purpose register or the stack. Parameters can also be
passed back to the calling procedure in this same manner.

6.3.4 Saving Procedure State Information

The processor does not save the contents of the general-purpose registers, segment registers, or the EFLAGS
register on a procedure call. A calling procedure should explicitly save the values in any of the general-purpose
registers that it will need when it resumes execution after a return. These values can be saved on the stack orin
memory in one of the data segments.

The PUSHA and POPA instructions facilitate saving and restoring the contents of the general-purpose registers.
PUSHA pushes the values in all the general-purpose registers on the stack in the following order: EAX, ECX, EDX,
EBX, ESP (the value prior to executing the PUSHA instruction), EBP, ESI, and EDI. The POPA instruction pops all the
register values saved with a PUSHA instruction (except the ESP value) from the stack to their respective registers.

If a called procedure changes the state of any of the segment registers explicitly, it should restore them to their
former values before executing a return to the calling procedure.

If a calling procedure needs to maintain the state of the EFLAGS register, it can save and restore all or part of the
register using the PUSHF/PUSHFD and POPF/POPFD instructions. The PUSHF instruction pushes the lower word of
the EFLAGS register on the stack, while the PUSHFD instruction pushes the entire register. The POPF instruction
pops a word from the stack into the lower word of the EFLAGS register, while the POPFD instruction pops a double
word from the stack into the register.

6.3.5 Calls to Other Privilege Levels

The IA-32 architecture’s protection mechanism recognizes four privilege levels, numbered from 0 to 3, where a
greater number mean less privilege. The reason to use privilege levels is to improve the reliability of operating
systems. For example, Figure 6-3 shows how privilege levels can be interpreted as rings of protection.

Protection Rings

Operating

System

Kernel

Operating System
“

Services (Device
Drivers, Etc.)

Applications

Highest Lowest
0 1 2 3

Privilege Levels

Figure 6-3. Protection Rings

6-6 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

In this example, the highest privilege level 0 (at the center of the diagram) is used for segments that contain the
most critical code modules in the system, usually the kernel of an operating system. The outer rings (with progres-
sively lower privileges) are used for segments that contain code modules for less critical software.

Code modules in lower privilege segments can only access modules operating at higher privilege segments by
means of a tightly controlled and protected interface called a gate. Attempts to access higher privilege segments
without going through a protection gate and without having sufficient access rights causes a general-protection
exception (#GP) to be generated.

If an operating system or executive uses this multilevel protection mechanism, a call to a procedure thatisin a
more privileged protection level than the calling procedure is handled in a similar manner as a far call (see Section
6.3.2, “Far CALL and RET Operation”). The differences are as follows:

®* The segment selector provided in the CALL instruction references a special data structure called a call gate
descriptor. Among other things, the call gate descriptor provides the following:

— access rights information
— the segment selector for the code segment of the called procedure
— an offset into the code segment (that is, the instruction pointer for the called procedure)

®* The processor switches to a new stack to execute the called procedure. Each privilege level has its own stack.
The segment selector and stack pointer for the privilege level 3 stack are stored in the SS and ESP registers,
respectively, and are automatically saved when a call to a more privileged level occurs. The segment selectors
and stack pointers for the privilege level 2, 1, and 0 stacks are stored in a system segment called the task state
segment (TSS).

The use of a call gate and the TSS during a stack switch are transparent to the calling procedure, except when a
general-protection exception is raised.

6.3.6 CALL and RET Operation Between Privilege Levels

When making a call to a more privileged protection level, the processor does the following (see Figure 6-4):
1. Performs an access rights check (privilege check).
2. Temporarily saves (internally) the current contents of the SS, ESP, CS, and EIP registers.

Vol. 1T 6-7

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

8.

Stack for Stack for
Calling Procedure Called Procedure
Calling SS
Calling ESP
Stack Frame Param 1 Param 1
Before Call |: Param 2 Param 2 Stack Frame
Param 3 <—ESP Before Call Param 3 After Call
Calling CS

ESP After Call—>| Calling EIP

Calling SS

[<— ESP After Return Calling ESP
Param 1 Param 1
Param 2 Param 2
Param 3 Param 3

Calling CS

ESP Before Return—>»| Calling EIP

Note: On a return, parameters are
released on both stacks based on the
optional n operand in the RET n instruction.

Figure 6-4. Stack Switch on a Call to a Different Privilege Level

Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being
called) from the TSS into the SS and ESP registers and switches to the new stack.

Pushes the temporarily saved SS and ESP values for the calling procedure’s stack onto the new stack.

Copies the parameters from the calling procedure’s stack to the new stack. A value in the call gate descriptor
determines how many parameters to copy to the new stack.

Pushes the temporarily saved CS and EIP values for the calling procedure to the new stack.

Loads the segment selector for the new code segment and the new instruction pointer from the call gate into
the CS and EIP registers, respectively.

Begins execution of the called procedure at the new privilege level.

When executing a return from the privileged procedure, the processor performs these actions:

1.
2.
3.

Performs a privilege check.
Restores the CS and EIP registers to their values prior to the call.

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack. If the call gate descriptor specifies that one
or more parameters be copied from one stack to the other, a RET n instruction must be used to release the
parameters from both stacks. Here, the n operand specifies the number of bytes occupied on each stack by the
parameters. On a return, the processor increments ESP by n for each stack to step over (effectively remove)
these parameters from the stacks.

Restores the SS and ESP registers to their values prior to the call, which causes a switch back to the stack of
the calling procedure.

If the RET instruction has an optional n argument, increments the stack pointer by the number of bytes
specified with the n operand to release parameters from the stack (see explanation in step 3).

Resumes execution of the calling procedure.

6-8 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

See Chapter 5, “Protection,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for
detailed information on calls to privileged levels and the call gate descriptor.

6.3.7 Branch Functions in 64-Bit Mode

The 64-bit extensions expand branching mechanisms to accommodate branches in 64-bit linear-address space.
These are:

®* Near-branch semantics are redefined in 64-bit mode
®* In 64-bit mode and compatibility mode, 64-bit call-gate descriptors for far calls are available

In 64-bit mode, the operand size for all near branches (CALL, RET, JCC, JCXZ, JMP, and LOOP) is forced to 64 bits.
These instructions update the 64-bit RIP without the need for a REX operand-size prefix.

The following aspects of near branches are controlled by the effective operand size:
®* Truncation of the size of the instruction pointer

® Size of a stack pop or push, due to a CALL or RET

® Size of a stack-pointer increment or decrement, due to a CALL or RET

®* Indirect-branch operand size

In 64-bit mode, all of the above actions are forced to 64 bits regardless of operand size prefixes (operand size
prefixes are silently ignored). However, the displacement field for relative branches is still limited to 32 bits and the
address size for near branches is not forced in 64-bit mode.

Address sizes affect the size of RCX used for JCXZ and LOOP; they also impact the address calculation for memory
indirect branches. Such addresses are 64 bits by default; but they can be overridden to 32 bits by an address size
prefix.

Software typically uses far branches to change privilege levels. The legacy IA-32 architecture provides the call-gate
mechanism to allow software to branch from one privilege level to another, although call gates can also be used for
branches that do not change privilege levels. When call gates are used, the selector portion of the direct or indirect
pointer references a gate descriptor (the offset in the instruction is ignored). The offset to the destination’s code
segment is taken from the call-gate descriptor.

64-bit mode redefines the type value of a 32-bit call-gate descriptor type to a 64-bit call gate descriptor and
expands the size of the 64-bit descriptor to hold a 64-bit offset. The 64-bit mode call-gate descriptor allows far
branches that reference any location in the supported linear-address space. These call gates also hold the target
code selector (CS), allowing changes to privilege level and default size as a result of the gate transition.

Because immediates are generally specified up to 32 bits, the only way to specify a full 64-bit absolute RIP in 64-
bit mode is with an indirect branch. For this reason, direct far branches are eliminated from the instruction set in
64-bit mode.

64-bit mode also expands the semantics of the SYSENTER and SYSEXIT instructions so that the instructions
operate within a 64-bit memory space. The mode also introduces two new instructions: SYSCALL and SYSRET
(which are valid only in 64-bit mode). For details, see "SYSENTER—Fast System Call,” “"SYSEXIT—Fast Return from
Fast System Call,” "SYSCALL—Fast System Call,” and "SYSRET—Return From Fast System Call” in Chapter 4,
“Instruction Set Reference, M-U,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2B.

6.4 INTERRUPTS AND EXCEPTIONS

The processor provides two mechanisms for interrupting program execution, interrupts and exceptions:
®* Aninterruptis an asynchronous event that is typically triggered by an I/0 device.

®* An exception is a synchronous event that is generated when the processor detects one or more predefined
conditions while executing an instruction. The IA-32 architecture specifies three classes of exceptions: faults,
traps, and aborts.

Vol.1T 6-9

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

The processor responds to interrupts and exceptions in essentially the same way. When an interrupt or exception
is signaled, the processor halts execution of the current program or task and switches to a handler procedure that
has been written specifically to handle the interrupt or exception condition. The processor accesses the handler
procedure through an entry in the interrupt descriptor table (IDT). When the handler has completed handling the
interrupt or exception, program control is returned to the interrupted program or task.

The operating system, executive, and/or device drivers normally handle interrupts and exceptions independently
from application programs or tasks. Application programs can, however, access the interrupt and exception
handlers incorporated in an operating system or executive through assembly-language calls. The remainder of this
section gives a brief overview of the processor’s interrupt and exception handling mechanism. See Chapter 6,
“Interrupt and Exception Handling,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
3A, for a description of this mechanism.

The IA-32 Architecture defines 18 predefined interrupts and exceptions and 224 user defined interrupts, which are
associated with entries in the IDT. Each interrupt and exception in the IDT is identified with a number, called a
vector. Table 6-1 lists the interrupts and exceptions with entries in the IDT and their respective vectors. Vectors 0
through 8, 10 through 14, and 16 through 19 are the predefined interrupts and exceptions; vectors 32 through 255
are for software-defined interrupts, which are for either software interrupts or maskable hardware inter-
rupts.

Note that the processor defines several additional interrupts that do not point to entries in the IDT; the most
notable of these interrupts is the SMI interrupt. See Chapter 6, “Interrupt and Exception Handling,” in the Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for more information about the interrupts
and exceptions.

When the processor detects an interrupt or exception, it does one of the following things:
®* Executes an implicit call to a handler procedure.
®* Executes an implicit call to a handler task.

6.4.1 Call and Return Operation for Interrupt or Exception Handling Procedures

A call to an interrupt or exception handler procedure is similar to a procedure call to another protection level (see
Section 6.3.6, "CALL and RET Operation Between Privilege Levels”). Here, the vector references one of two kinds
of gates in the IDT: an interrupt gate or a trap gate. Interrupt and trap gates are similar to call gates in that they
provide the following information:

® Access rights information
®* The segment selector for the code segment that contains the handler procedure
®* An offset into the code segment to the first instruction of the handler procedure

The difference between an interrupt gate and a trap gate is as follows. If an interrupt or exception handler is called
through an interrupt gate, the processor clears the interrupt enable (IF) flag in the EFLAGS register to prevent
subsequent interrupts from interfering with the execution of the handler. When a handler is called through a trap
gate, the state of the IF flag is not changed.

Table 6-1. Exceptions and Interrupts

Vector | Mnemonic Description Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
2 NMI Interrupt Non-maskable external interrupt.
3 #BP Breakpoint INT3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (UnDefined Opcode) UD instruction or reserved opcode.
7 #NM Device Not Available (No Math Coprocessor) Floating-point or WAIT/FWAIT instruction.

6-10 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Table 6-1. Exceptions and Interrupts (Contd.)

Vector | Mnemonic Description Source
8 #DF Double Fault Any instruction that can generate an exception, an NMI, or
an INTR.
9 #MF CoProcessor Segment Overrun (reserved) Floating-point instruction.’
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other protection checks.
14 #PF Page Fault Any memory reference.
15 Reserved
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT instruction.
17 #AC Alignment Check Any data reference in memory.2
18 #MC Machine Check Error codes (if any) and source are model dependent.3
19 #XM SIMD Floating-Point Exception SIMD Floating-Point Instruction®
20 #VE Virtualization Exception EPT violations®
21-31 Reserved
32-255 Maskable Interrupts External interrupt from INTR pin or INT ninstruction.
NOTES:

1. 1A-32 processors after the Intel386 processor do not generate this exception.

2. This exception was introduced in the Intel486 processor.

3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

4. This exception was introduced in the Pentium Ill processor.

5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE" VM-execution control.

If the code segment for the handler procedure has the same privilege level as the currently executing program or
task, the handler procedure uses the current stack; if the handler executes at a more privileged level, the
processor switches to the stack for the handler’s privilege level.

If no stack switch occurs, the processor does the following when calling an interrupt or exception handler (see
Figure 6-5):

1. Pushes the current contents of the EFLAGS, CS, and EIP registers (in that order) on the stack.
2. Pushes an error code (if appropriate) on the stack.

3. Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate
or trap gate) into the CS and EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
5. Begins execution of the handler procedure.

Vol.1 6-11

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler's Stack

~<— ESP Before

EFLAGS Transfer to Handler
cS
EIP

Error Code ——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change
Interrupted Procedure’s Handler's Stack
Stack
<<—— ESP Before
Transfer to Handler SS
ESP
EFLAGS
CS
EIP
ESP After——>» Error Code
Transfer to Handler

Figure 6-5. Stack Usage on Transfers to Interrupt and Exception Handling Routines

If a stack switch does occur, the processor does the following:

1.
2.

6.
7.

Temporarily saves (internally) the current contents of the SS, ESP, EFLAGS, CS, and EIP registers.

Loads the segment selector and stack pointer for the new stack (that is, the stack for the privilege level being
called) from the TSS into the SS and ESP registers and switches to the new stack.

Pushes the temporarily saved SS, ESP, EFLAGS, CS, and EIP values for the interrupted procedure’s stack onto
the new stack.

Pushes an error code on the new stack (if appropriate).

Loads the segment selector for the new code segment and the new instruction pointer (from the interrupt gate
or trap gate) into the CS and EIP registers, respectively.

If the call is through an interrupt gate, clears the IF flag in the EFLAGS register.
Begins execution of the handler procedure at the new privilege level.

A return from an interrupt or exception handler is initiated with the IRET instruction. The IRET instruction is similar
to the far RET instruction, except that it also restores the contents of the EFLAGS register for the interrupted proce-
dure. When executing a return from an interrupt or exception handler from the same privilege level as the inter-
rupted procedure, the processor performs these actions:

1.
2.
3.
4.

Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.

Increments the stack pointer appropriately.

Resumes execution of the interrupted procedure.

When executing a return from an interrupt or exception handler from a different privilege level than the interrupted
procedure, the processor performs these actions:

1.

Performs a privilege check.

6-12 Vol. 1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Restores the CS and EIP registers to their values prior to the interrupt or exception.
Restores the EFLAGS register.

Restores the SS and ESP registers to their values prior to the interrupt or exception, resulting in a stack switch
back to the stack of the interrupted procedure.

5. Resumes execution of the interrupted procedure.

6.4.2 Calls to Interrupt or Exception Handler Tasks

Interrupt and exception handler routines can also be executed in a separate task. Here, an interrupt or exception
causes a task switch to a handler task. The handler task is given its own address space and (optionally) can
execute at a higher protection level than application programs or tasks.

The switch to the handler task is accomplished with an implicit task call that references a task gate descriptor.
The task gate provides access to the address space for the handler task. As part of the task switch, the processor
saves complete state information for the interrupted program or task. Upon returning from the handler task, the
state of the interrupted program or task is restored and execution continues. See Chapter 6, “Interrupt and Excep-
tion Handling,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for more infor-
mation on handling interrupts and exceptions through handler tasks.

6.4.3 Interrupt and Exception Handling in Real-Address Mode

When operating in real-address mode, the processor responds to an interrupt or exception with an implicit far call
to an interrupt or exception handler. The processor uses the interrupt or exception vector as an index into an inter-
rupt table. The interrupt table contains instruction pointers to the interrupt and exception handler procedures.

The processor saves the state of the EFLAGS register, the EIP register, the CS register, and an optional error code
on the stack before switching to the handler procedure.

A return from the interrupt or exception handler is carried out with the IRET
instruction.

See Chapter 20, “"8086 Emulation,” in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume
3B, for more information on handling interrupts and exceptions in real-address mode.

6.4.4 INT n, INTO, INT3, INT1, and BOUND Instructions

The INT n, INTO, INT3, and BOUND instructions allow a program or task to explicitly call an interrupt or exception
handler. The INT n instruction (opcode CD) uses a vector as an argument, which allows a program to call any inter-
rupt handler.

The INTO instruction (opcode CE) explicitly calls the overflow exception (#OF) handler if the overflow flag (OF) in
the EFLAGS register is set. The OF flag indicates overflow on arithmetic instructions, but it does not automatically
raise an overflow exception. An overflow exception can only be raised explicitly in either of the following ways:

® Execute the INTO instruction.

* Test the OF flag and execute the INT n instruction with an argument of 4 (the vector of the overflow exception)
if the flag is set.

Both the methods of dealing with overflow conditions allow a program to test for overflow at specific places in the
instruction stream.

The INT3 instruction (opcode CC) explicitly calls the breakpoint exception (#BP) handler. Similarly, the INT1
instruction (opcode F1) explicitly calls the debug exception (#DB) handler.!

The BOUND instruction explicitly calls the BOUND-range exceeded exception (#BR) handler if an operand is found
to be not within predefined boundaries in memory. This instruction is provided for checking references to arrays

1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead
use the INT3 instruction for software breakpoints.

Vol.1 6-13

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

and other data structures. Like the overflow exception, the BOUND-range exceeded exception can only be raised
explicitly with the BOUND instruction or the INT n instruction with an argument of 5 (the vector of the bounds-
check exception). The processor does not implicitly perform bounds checks and raise the BOUND-range exceeded
exception.

6.4.5 Handling Floating-Point Exceptions

When operating on individual or packed floating-point values, the IA-32 architecture supports a set of six floating-
point exceptions. These exceptions can be generated during operations performed by the x87 FPU instructions or
by SSE/SSE2/SSE3 instructions. When an x87 FPU instruction (including the FISTTP instruction in SSE3) generates
one or more of these exceptions, it in turn generates floating-point error exception (#MF); when an
SSE/SSE2/SSE3 instruction generates a floating-point exception, it in turn generates SIMD floating-point exception
(#XM).

See the following sections for further descriptions of the floating-point exceptions, how they are generated, and
how they are handled:

® Section 4.9.1, “Floating-Point Exception Conditions,” and Section 4.9.3, “Typical Actions of a Floating-Point
Exception Handler”

® Section 8.4, “x87 FPU Floating-Point Exception Handling,” and Section 8.5, "x87 FPU Floating-Point Exception
Conditions”

® Section 11.5.1, "SIMD Floating-Point Exceptions”
* Interrupt Behavior

6.4.6 Interrupt and Exception Behavior in 64-Bit Mode

64-bit extensions expand the legacy IA-32 interrupt-processing and exception-processing mechanism to allow
support for 64-bit operating systems and applications. Changes include:

® Allinterrupt handlers pointed to by the IDT are 64-bit code (does not apply to the SMI handler).
®* The size of interrupt-stack pushes is fixed at 64 bits. The processor uses 8-byte, zero extended stores.

®* The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy environments, this push is
conditional and based on a change in current privilege level (CPL).

® The new SS is set to NULL if there is a change in CPL.
®* IRET behavior changes.

® There is a new interrupt stack-switch mechanism.

® The alignment of interrupt stack frame is different.

6.5 PROCEDURE CALLS FOR BLOCK-STRUCTURED LANGUAGES

The IA-32 architecture supports an alternate method of performing procedure calls with the ENTER (enter proce-
dure) and LEAVE (leave procedure) instructions. These instructions automatically create and release, respectively,
stack frames for called procedures. The stack frames have predefined spaces for local variables and the necessary
pointers to allow coherent returns from called procedures. They also allow scope rules to be implemented so that
procedures can access their own local variables and some number of other variables located in other stack frames.

ENTER and LEAVE offer two benefits:
®* They provide machine-language support for implementing block-structured languages, such as C and Pascal.
®* They simplify procedure entry and exit in compiler-generated code.

6-14 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6.5.1 ENTER Instruction

The ENTER instruction creates a stack frame compatible with the scope rules typically used in block-structured
languages. In block-structured languages, the scope of a procedure is the set of variables to which it has access.
The rules for scope vary among languages. They may be based on the nesting of procedures, the division of the
program into separately compiled files, or some other modularization scheme.

ENTER has two operands. The first specifies the number of bytes to be reserved on the stack for dynamic storage
for the procedure being called. Dynamic storage is the memory allocated for variables created when the procedure
is called, also known as automatic variables. The second parameter is the lexical nesting level (from 0 to 31) of the
procedure. The nesting level is the depth of a procedure in a hierarchy of procedure calls. The lexical level is unre-
lated to either the protection privilege level or to the I/O privilege level of the currently running program or task.

ENTER, in the following example, allocates 2 Kbytes of dynamic storage on the stack and sets up pointers to two
previous stack frames in the stack frame for this procedure:

ENTER 2048,3

The lexical nesting level determines the number of stack frame pointers to copy into the new stack frame from the
preceding frame. A stack frame pointer is a doubleword used to access the variables of a procedure. The set of
stack frame pointers used by a procedure to access the variables of other procedures is called the display. The first
doubleword in the display is a pointer to the previous stack frame. This pointer is used by a LEAVE instruction to
undo the effect of an ENTER instruction by discarding the current stack frame.

After the ENTER instruction creates the display for a procedure, it allocates the dynamic local variables for the
procedure by decrementing the contents of the ESP register by the number of bytes specified in the first parameter.
This new value in the ESP register serves as the initial top-of-stack for all PUSH and POP operations within the
procedure.

To allow a procedure to address its display, the ENTER instruction leaves the EBP register pointing to the first
doubleword in the display. Because stacks grow down, this is actually the doubleword with the highest address in
the display. Data manipulation instructions that specify the EBP register as a base register automatically address
locations within the stack segment instead of the data segment.

The ENTER instruction can be used in two ways: nested and non-nested. If the lexical level is 0, the non-nested
form is used. The non-nested form pushes the contents of the EBP register on the stack, copies the contents of the
ESP register into the EBP register, and subtracts the first operand from the contents of the ESP register to allocate
dynamic storage. The non-nested form differs from the nested form in that no stack frame pointers are copied. The
nested form of the ENTER instruction occurs when the second parameter (lexical level) is not zero.

The following pseudo code shows the formal definition of the ENTER instruction. STORAGE is the number of bytes
of dynamic storage to allocate for local variables, and LEVEL is the lexical nesting level.

PUSH EBP;
FRAME_PTR « ESP;
IFLEVEL > O
THEN
DO (LEVEL — 1) times
EBP « EBP - 4;
PUSH Pointer(EBP); (* doubleword pointed to by EBP *)
oD;

PUSH FRAME_PTR;
Fl;
EBP « FRAME_PTR;
ESP « ESP — STORAGE;

The main procedure (in which all other procedures are nested) operates at the highest lexical level, level 1. The
first procedure it calls operates at the next deeper lexical level, level 2. A level 2 procedure can access the variables
of the main program, which are at fixed locations specified by the compiler. In the case of level 1, the ENTER
instruction allocates only the requested dynamic storage on the stack because there is no previous display to copy.

Vol.1 6-15

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

A procedure that calls another procedure at a lower lexical level gives the called procedure access to the variables
of the caller. The ENTER instruction provides this access by placing a pointer to the calling procedure's stack frame
in the display.

A procedure that calls another procedure at the same lexical level should not give access to its variables. In this
case, the ENTER instruction copies only that part of the display from the calling procedure which refers to previ-
ously nested procedures operating at higher lexical levels. The new stack frame does not include the pointer for
addressing the calling procedure’s stack frame.

The ENTER instruction treats a re-entrant procedure as a call to a procedure at the same lexical level. In this case,
each succeeding iteration of the re-entrant procedure can address only its own variables and the variables of the
procedures within which it is nested. A re-entrant procedure always can address its own variables; it does not
require pointers to the stack frames of previous iterations.

By copying only the stack frame pointers of procedures at higher lexical levels, the ENTER instruction makes certain
that procedures access only those variables of higher lexical levels, not those at parallel lexical levels (see
Figure 6-6).

Main (Lexical Level 1)

Procedure A (Lexical Level 2)

| Procedure B (Lexical Level 3) |

Procedure C (Lexical Level 3)

| Procedure D (Lexical Level 4) |

Figure 6-6. Nested Procedures

Block-structured languages can use the lexical levels defined by ENTER to control access to the variables of nested
procedures. In Figure 6-6, for example, if procedure A calls procedure B which, in turn, calls procedure C, then
procedure C will have access to the variables of the MAIN procedure and procedure A, but not those of procedure B
because they are at the same lexical level. The following definition describes the access to variables for the nested
procedures in Figure 6-6.

1. MAIN has variables at fixed locations.
2. Procedure A can access only the variables of MAIN.

3. Procedure B can access only the variables of procedure A and MAIN. Procedure B cannot access the variables of
procedure C or procedure D.

4. Procedure C can access only the variables of procedure A and MAIN. Procedure C cannot access the variables of
procedure B or procedure D.

5. Procedure D can access the variables of procedure C, procedure A, and MAIN. Procedure D cannot access the
variables of procedure B.

In Figure 6-7, an ENTER instruction at the beginning of the MAIN procedure creates three doublewords of dynamic
storage for MAIN, but copies no pointers from other stack frames. The first doubleword in the display holds a copy
of the last value in the EBP register before the ENTER instruction was executed. The second doubleword holds a
copy of the contents of the EBP register following the ENTER instruction. After the instruction is executed, the EBP
register points to the first doubleword pushed on the stack, and the ESP register points to the last doubleword in
the stack frame.

When MAIN calls procedure A, the ENTER instruction creates a new display (see Figure 6-8). The first doubleword
is the last value held in MAIN's EBP register. The second doubleword is a pointer to MAIN's stack frame which is
copied from the second doubleword in MAIN's display. This happens to be another copy of the last value held in
MAIN’s EBP register. Procedure A can access variables in MAIN because MAIN is at level 1.

6-16 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Therefore the base address for the dynamic storage used in MAIN is the current address in the EBP register, plus
four bytes to account for the saved contents of MAIN’s EBP register. All dynamic variables for MAIN are at fixed,
positive offsets from this value.

Old EBP < EBP
Display -
Main’s EBP
Dynamic
Storage
<— ESP

Figure 6-7. Stack Frame After Entering the MAIN Procedure

Old EBP
Main’s EBP
. Main’s EBP <— EBP
Display -
Main’s EBP
Procedure A's EBP
Dynamic
Storage
<— ESP

Figure 6-8. Stack Frame After Entering Procedure A

When procedure A calls procedure B, the ENTER instruction creates a new display (see Figure 6-9). The first
doubleword holds a copy of the last value in procedure A’s EBP register. The second and third doublewords are
copies of the two stack frame pointers in procedure A’s display. Procedure B can access variables in procedure A
and MAIN by using the stack frame pointers in its display.

When procedure B calls procedure C, the ENTER instruction creates a new display for procedure C (see

Figure 6-10). The first doubleword holds a copy of the last value in procedure B’s EBP register. This is used by the
LEAVE instruction to restore procedure B’s stack frame. The second and third doublewords are copies of the two
stack frame pointers in procedure A’s display. If procedure C were at the next deeper lexical level from procedure
B, a fourth doubleword would be copied, which would be the stack frame pointer to procedure B’s local variables.

Note that procedure B and procedure C are at the same level, so procedure C is not intended to access procedure
B’s variables. This does not mean that procedure C is completely isolated from procedure B; procedure C is called
by procedure B, so the pointer to the returning stack frame is a pointer to procedure B’s stack frame. In addition,
procedure B can pass parameters to procedure C either on the stack or through variables global to both procedures
(that is, variables in the scope of both procedures).

Vol.1 6-17

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP
Main’s EBP

Main’s EBP
Main’s EBP
Procedure A's EBP

IR Procedure A's EBP <—EBP
. Main’s EBP
Display
Procedure A's EBP
| Procedure B’'s EBP
Dynamic
Storage
L -<—ESP

Figure 6-9. Stack Frame After Entering Procedure B

6-18 Vol.1

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

Old EBP

Main’s EBP

Main’s EBP

Main’s EBP

Procedure A's EBP

Procedure A's EBP

Main’s EBP

Procedure A's EBP

Procedure B’'s EBP

Procedure B’s EBP <—EBP
. Main’s EBP
Display
Procedure A's EBP
| Procedure C’s EBP
Dynamic
Storage
L <—ESP
Figure 6-10. Stack Frame After Entering Procedure C

6.5.2 LEAVE Instruction

The LEAVE instruction, which does not have any operands, reverses the action of the previous ENTER instruction.
The LEAVE instruction copies the contents of the EBP register into the ESP register to release all stack space allo-
cated to the procedure. Then it restores the old value of the EBP register from the stack. This simultaneously

restores the ESP register to its original value. A subsequent RET instruction then can remove any arguments and

the return address pushed on the stack by the calling program for use by the procedure.

Vol.1 6-19

PROCEDURE CALLS, INTERRUPTS, AND EXCEPTIONS

6-20 Vol.1

2. Updates to Chapter 13, Volume 1

Change bars show changes to Chapter 13 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 1: Basic Architecture.

Change to this chapter: Minor typo corrections.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 17

CHAPTER 13
MANAGING STATE USING THE XSAVE FEATURE SET

The XSAVE feature set extends the functionality of the FXSAVE and FXRSTOR instructions (see Section 10.5,
“FXSAVE and FXRSTOR Instructions”) by supporting the saving and restoring of processor state in addition to the
x87 execution environment (x87 state) and the registers used by the streaming SIMD extensions (SSE state).

The XSAVE feature set comprises eight instructions. XGETBV and XSETBV allow software to read and write the
extended control register XCRO, which controls the operation of the XSAVE feature set. XSAVE, XSAVEOPT,
XSAVEC, and XSAVES are four instructions that save processor state to memory; XRSTOR and XRSTORS are corre-
sponding instructions that load processor state from memory. XGETBV, XSAVE, XSAVEOPT, XSAVEC, and XRSTOR
can be executed at any privilege level; XSETBV, XSAVES, and XRSTORS can be executed only if CPL = 0. In addition
to XCRO, the XSAVES and XRSTORS instructions are controlled also by the IA32_XSS MSR (index DAOH).

The XSAVE feature set organizes the state that manages into state components. Operation of the instructions is
based on state-component bitmaps that have the same format as XCRO and as the IA32_XSS MSR: each bit
corresponds to a state component. Section 13.1 discusses these state components and bitmaps in more detail.

Section 13.2 describes how the processor enumerates support for the XSAVE feature set and for XSAVE-enabled
features (those features that require use of the XSAVE feature set for their enabling). Section 13.3 explains how
software can enable the XSAVE feature set and XSAVE-enabled features.

The XSAVE feature set allows saving and loading processor state from a region of memory called an XSAVE area.
Section 13.4 presents details of the XSAVE area and its organization. Each XSAVE-managed state component is
associated with a section of the XSAVE area. Section 13.5 describes in detail each of the XSAVE-managed state
components.

Section 13.7 through Section 13.12 describe the operation of XSAVE, XRSTOR, XSAVEOPT, XSAVEC, XSAVES, and
XRSTORS, respectively.

13.1 XSAVE-SUPPORTED FEATURES AND STATE-COMPONENT BITMAPS

The XSAVE feature set supports the saving and restoring of state components, each of which is a discrete set of
processor registers (or parts of registers). In general, each such state component corresponds to a particular CPU
feature. Such a feature is XSAVE-supported. Some XSAVE-supported features use registers in multiple XSAVE-
managed state components.

The XSAVE feature set organizes the state components of the XSAVE-supported features using state-component
bitmaps. A state-component bitmap comprises 64 bits; each bit in such a bitmap corresponds to a single state
component. The following bits are defined in state-component bitmaps:

®* Bit 0 corresponds to the state component used for the x87 FPU execution environment (x87 state). See
Section 13.5.1.

® Bit 1 corresponds to the state component used for registers used by the streaming SIMD extensions (SSE
state). See Section 13.5.2.

® Bit 2 corresponds to the state component used for the additional register state used by the Intel® Advanced
Vector Extensions (AVX state). See Section 13.5.3.

* Bits 4:3 correspond to the two state components used for the additional register state used by Intel® Memory
Protection Extensions (MPX state):

— State component 3 is used for the 4 128-bit bounds registers BNDO-BND3 (BNDREGS state).

— State component 4 is used for the 64-bit user-mode MPX configuration register BNDCFGU and the 64-bit
MPX status register BNDSTATUS (BNDCSR state).

* Bits 7:5 correspond to the three state components used for the additional register state used by Intel®
Advanced Vector Extensions 512 (AVX-512 state):

— State component 5 is used for the 8 64-bit opmask registers kO-k7 (opmask state).

Vol.1T 13-1

MANAGING STATE USING THE XSAVE FEATURE SET

— State component 6 is used for the upper 256 bits of the registers ZMM0-ZMM15. These 16 256-bit values
are denoted ZMM0_H-ZMM15_H (ZMM_Hi256 state).

— State component 7 is used for the 16 512-bit registers ZMM16-ZMM31 (Hi1l6_ZMM state).
® Bit 8 corresponds to the state component used for the Intel Processor Trace MSRs (PT state).

® Bit 9 corresponds to the state component used for the protection-key feature’s register PKRU (PKRU state).
See Section 13.5.7.

® Bit 13 corresponds to the state component used for an MSR used to control hardware duty cycling (HDC
state). See Section 13.5.8.

Bits in the ranges 62:14 and 12:10 are not currently defined in state-component bitmaps and are reserved for
future expansion. As individual state component is defined within bits 62:11, additional sub-sections are updated
within Section 13.5 over time. Bit 63 is used for special functionality in some bitmaps and does not correspond to
any state component.

The state component corresponding to bit i of state-component bitmaps is called state component i. Thus, x87
state is state component 0; SSE state is state component 1; AVX state is state component 2; MPX state comprises
state components 3-4; AVX-512 state comprises state components 5-7; PT state is state component 8; PKRU
state is state component 9; and HDC state is state component 13.

The XSAVE feature set uses state-component bitmaps in multiple ways. Most of the instructions use an implicit
operand (in EDX:EAX), called the instruction mask, which is the state-component bitmap that specifies the state
components on which the instruction operates.

Some state components are user state components, and they can be managed by the entire XSAVE feature set.
Other state components are supervisor state components, and they can be managed only by XSAVES and
XRSTORS. The state components corresponding to bit 9 and to bits in the range 7:0 are user state components, PT
state (corresponding to bit 8) and HDC state (corresponding to bit 13) are supervisor state components.

Extended control register XCRO contains a state-component bitmap that specifies the user state components that
software has enabled the XSAVE feature set to manage. If the bit corresponding to a state component is clear in
XCRO, instructions in the XSAVE feature set will not operate on that state component, regardless of the value of the
instruction mask.

The IA32_XSS MSR (index DAOH) contains a state-component bitmap that specifies the supervisor state compo-
nents that software has enabled XSAVES and XRSTORS to manage (XSAVE, XSAVEC, XSAVEOPT, and XRSTOR
cannot manage supervisor state components). If the bit corresponding to a state component is clear in the
IA32_XSS MSR, XSAVES and XRSTORS will not operate on that state component, regardless of the value of the
instruction mask.

Some XSAVE-supported features can be used only if XCRO has been configured so that the features’ state compo-
nents can be managed by the XSAVE feature set. (This applies only to features with user state components.) Such
state components and features are XSAVE-enabled. In general, the processor will not modify (or allow modifica-
tion of) the registers of a state component of an XSAVE-enabled feature if the bit corresponding to that state
component is clear in XCRO. (If software clears such a bit in XCRO, the processor preserves the corresponding state
component.) If an XSAVE-enabled feature has not been fully enabled in XCRO, execution of any instruction defined
for that feature causes an invalid-opcode exception (#UD).

As will be explained in Section 13.3, the XSAVE feature set is enabled only if CR4.0SXSAVE[bit 18] = 1. If
CR4.0SXSAVE = 0, the processor treats XSAVE-enabled state features and their state components as if all bits in
XCRO were clear; the state components cannot be modified and the features’ instructions cannot be executed.

The state components for x87 state, for SSE state, for PT state, for PKRU state, and for HDC state are XSAVE-
managed but the corresponding features are not XSAVE-enabled. Processors allow modification of this state, as
well as execution of x87 FPU instructions and SSE instructions and use of Intel Processor Trace, protection keys,
and hardware duty cycling regardless of the value of CR4.0SXSAVE and XCRO.

13-2 Vol.1

13.2

MANAGING STATE USING THE XSAVE FEATURE SET

ENUMERATION OF CPU SUPPORT FOR XSAVE INSTRUCTIONS AND XSAVE-
SUPPORTED FEATURES

A processor enumerates support for the XSAVE feature set and for features supported by that feature set using the
CPUID instruction. The following items provide specific details:

® CPUID.1:ECX.XSAVE[bit 26] enumerates general support for the XSAVE feature set:

— If this bit is 0, the processor does not support any of the following instructions: XGETBV, XRSTOR,
XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV; the processor provides no further
enumeration through CPUID function ODH (see below).

— If this bit is 1, the processor supports the following instructions: XGETBV, XRSTOR, XSAVE, and XSETBV.1
Further enumeration is provided through CPUID function ODH.

CR4.0SXSAVE can be set to 1 if and only if CPUID.1:ECX.XSAVE[bit 26] is enumerated as 1.

® CPUID function ODH enumerates details of CPU support through a set of sub-functions. Software selects a
specific sub-function by the value placed in the ECX register. The following items provide specific details:

— CPUID function 0DH, sub-function 0.

EDX:EAX is a bitmap of all the user state components that can be managed using the XSAVE feature
set. A bit can be set in XCRO if and only if the corresponding bit is set in this bitmap. Every processor
that supports the XSAVE feature set will set EAX[0] (x87 state) and EAX[1] (SSE state).

If EAX[i] = 1 (for 1 <i < 32) or EDX[i-32] = 1 (for 32 < i < 63), sub-function i enumerates details for
state component i (see below).

ECX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all
the user state components supported by this processor.

EBX enumerates the size (in bytes) required by the XSAVE instruction for an XSAVE area containing all
the user state components corresponding to bits currently set in XCRO.

— CPUID function 0DH, sub-function 1.

EAX[0] enumerates support for the XSAVEOPT instruction. The instruction is supported if and only if
this bit is 1. If EAX[0] = 0, execution of XSAVEOPT causes an invalid-opcode exception (#UD).

EAX[1] enumerates support for compaction extensions to the XSAVE feature set. The following are
supported if this bit is 1:

— The compacted format of the extended region of XSAVE areas (see Section 13.4.3).
— The XSAVEC instruction. If EAX[1] = 0, execution of XSAVEC causes a #UD.
— Execution of the compacted form of XRSTOR (see Section 13.8).

EAX[2] enumerates support for execution of XGETBV with ECX = 1. This allows software to determine
the state of the init optimization. See Section 13.6.

EAX[3] enumerates support for XSAVES, XRSTORS, and the IA32_XSS MSR. If EAX[3] = 0, execution
of XSAVES or XRSTORS causes a #UD; an attempt to access the IA32_XSS MSR using RDMSR or
WRMSR causes a general-protection exception (#GP). Every processor that supports a supervisor state
component sets EAX[3]. Every processor that sets EAX[3] (XSAVES, XRSTORS, IA32_XSS) will also set
EAX[1] (the compaction extensions).

EAX[31:4] are reserved.

EBX enumerates the size (in bytes) required by the XSAVES instruction for an XSAVE area containing all
the state components corresponding to bits currently set in XCRO | IA32_XSS.

EDX:ECX is a bitmap of all the supervisor state components that can be managed by XSAVES and
XRSTORS. A bit can be set in the IA32_XSS MSR if and only if the corresponding bit is set in this bitmap.

1. If CPUID.T:ECX.XSAVE[bit 26] = 1, XGETBV and XSETBV may be executed with ECX = 0O (to read and write XCRO). Any support for
execution of these instructions with other values of ECX is enumerated separately.

Vol.1T 13-3

MANAGING STATE USING THE XSAVE FEATURE SET

NOTE

In summary, the XSAVE feature set supports state component i (0 < i < 63) if one of the following
is true: (1) i < 32 and CPUID.(EAX=0DH,ECX=0):EAX[i] = 1; (2)i = 32 and
CPUID.(EAX=0DH,ECX=0):EAX[i-32] = 1; (3) i < 32 and CPUID.(EAX=0DH,ECX=1):ECX[i] = 1;
or (4) i = 32 and CPUID.(EAX=0DH,ECX=1):EDX[i-32] = 1. The XSAVE feature set supports user
state componentii if (1) or (2) holds; if (3) or (4) holds, state component i is a supervisor state
component and support is limited to XSAVES and XRSTORS.

— CPUID function ODH, sub-function i (i > 1). This sub-function enumerates details for state component . If
the XSAVE feature set supports state component i (see note above), the following items provide specific
details:

* EAX enumerates the size (in bytes) required for state component i.

e If state componenti is a user state component, EBX enumerates the offset (in bytes, from the base of
the XSAVE area) of the section used for state component i. (This offset applies only when the standard
format for the extended region of the XSAVE area is being used; see Section 13.4.3.)

* If state component i is a supervisor state component, EBX returns 0.

e If state componenti is a user state component, ECX[0] return 0; if state component i is a supervisor
state component, ECX[0] returns 1.

* The value returned by ECX[1] indicates the alignment of state component i when the compacted format
of the extended region of an XSAVE area is used (see Section 13.4.3). If ECX[1] returns 0, state
component i is located immediately following the preceding state component; if ECX[1] returns 1, state
component i is located on the next 64-byte boundary following the preceding state component.

¢ ECX[31:2] and EDX return 0.

If the XSAVE feature set does not support state component i, sub-function i returns 0 in EAX, EBX, ECX, and
EDX.

13.3 ENABLING THE XSAVE FEATURE SET AND XSAVE-ENABLED FEATURES

Software enables the XSAVE feature set by setting CR4.0SXSAVE[bit 18] to 1 (e.g., with the MOV to CR4 instruc-
tion). If this bit is 0, execution of any of XGETBV, XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and
XSETBV causes an invalid-opcode exception (#UD).

When CR4.0SXSAVE = 1 and CPL = 0, executing the XSETBV instruction with ECX = 0 writes the 64-bit value in
EDX:EAX to XCRO (EAX is written to XCRO[31:0] and EDX to XCR0O[63:32]). (Execution of the XSETBV instruction
causes a general-protection fault — #GP — if CPL > 0.) The following items provide details regarding individual bits
in XCRO:

XCRO[0] is associated with x87 state (see Section 13.5.1). XCRO[0] is always 1. It has that value coming out of
RESET. Executing the XSETBV instruction causes a general-protection fault (#GP) if ECX = 0 and EAX[0] is O.

XCRO[1] is associated with SSE state (see Section 13.5.2). Software can use the XSAVE feature set to manage
SSE state only if XCRO[1] = 1. The value of XCRO[1] in no way determines whether software can execute SSE
instructions (these instructions can be executed even if XCRO[1] = 0).

XCRO[1] is 0 coming out of RESET. As noted in Section 13.2, every processor that supports the XSAVE feature
set allows software to set XCRO[1].

XCRO[2] is associated with AVX state (see Section 13.5.3). Software can use the XSAVE feature set to manage
AVX state only if XCRO[2] = 1. In addition, software can execute AVX instructions only if CR4.0SXSAVE =
XCRO[2] = 1. Otherwise, any execution of an AVX instruction causes an invalid-opcode exception (#UD).

XCRO[2] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0O[2] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[2] = 1. In addition, executing the XSETBV instruction causes a general-
protection fault (#GP) if ECX = 0 and EAX[2:1] has the value 10b; that is, software cannot enable the XSAVE

feature set for AVX state but not for SSE state.

As noted in Section 13.1, the processor will preserve AVX state unmodified if software clears XCRO[2].
However, clearing XCRO[2] while AVX state is not in its initial configuration may cause SSE instructions to incur
a power and performance penalty. See Section 13.5.3, “"Enable the Use Of XSAVE Feature Set And XSAVE State

13-4 Vol.1

MANAGING STATE USING THE XSAVE FEATURE SET

Components” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for how system
software can avoid this penalty.

XCRO[4:3] are associated with MPX state (see Section 13.5.4). Software can use the XSAVE feature set to
manage MPX state only if XCRO[4:3] = 11b. In addition, software can execute MPX instructions only if
CR4.0SXSAVE = 1 and XCRO0O[4:3] = 11b. Otherwise, any execution of an MPX instruction causes an invalid-
opcode exception (#UD).1

XCRO[4:3] have value 00b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCRO[4:3] to 11b if and only if CPUID.(EAX=0DH,ECX=0):EAX[4:3] = 11b. In addition, executing the XSETBV
instruction causes a general-protection fault (#GP) if ECX = 0, EAX[4:3] is neither 00b nor 11b; that is,
software can enable the XSAVE feature set for MPX state only if it does so for both state components.

As noted in Section 13.1, the processor will preserve MPX state unmodified if software clears XCR0[4:3].

XCRO[7:5] are associated with AVX-512 state (see Section 13.5.5). Software can use the XSAVE feature set to
manage AVX-512 state only if XCRO[7:5] = 111b. In addition, software can execute AVX-512 instructions only
if CR4.0SXSAVE = 1 and XCRO[7:5] = 111b. Otherwise, any execution of an AVX-512 instruction causes an
invalid-opcode exception (#UD).

XCRO[7:5] have value 000b coming out of RESET. As noted in Section 13.2, a processor allows software to set
XCRO[7:5] to 111b if and only if CPUID.(EAX=0DH,ECX=0):EAX[7:5] = 111b. In addition, executing the
XSETBV instruction causes a general-protection fault (#GP) if ECX = 0, EAX[7:5] is not 000b, and any bit is
clear in EAX[2:1] or EAX[7:5]; that is, software can enable the XSAVE feature set for AVX-512 state only if it
does so for all three state components, and only if it also does so for AVX state and SSE state. This implies that
the value of XCRO[7:5] is always either 000b or 111b.

As noted in Section 13.1, the processor will preserve AVX-512 state unmodified if software clears XCRO[7:5].
However, clearing XCRO[7:5] while AVX-512 state is not in its initial configuration may cause SSE and AVX
instructions to incur a power and performance penalty. See Section 13.5.3, "Enable the Use Of XSAVE Feature
Set And XSAVE State Components” of Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
3A, for how system software can avoid this penalty.

XCRO[9] is associated with PKRU state (see Section 13.5.7). Software can use the XSAVE feature set to
manage PKRU state only if XCRO[9] = 1. The value of XCRO[9] in no way determines whether software can use
protection keys or execute other instructions that access PKRU state (these instructions can be executed even
if XCRO[9] = 0).

XCRO[9] is 0 coming out of RESET. As noted in Section 13.2, a processor allows software to set XCR0O[9] if and
only if CPUID.(EAX=0DH,ECX=0):EAX[9] = 1.

XCRO[63:10] and XCRO[8] are reserved.? Executing the XSETBV instruction causes a general-protection fault
(#GP) if ECX = 0 and any corresponding bit in EDX:EAX is not 0. These bits in XCRO are all 0 coming out of
RESET.

Software operating with CPL > 0 may need to determine whether the XSAVE feature set and certain XSAVE-
enabled features have been enabled. If CPL > 0, execution of the MOV from CR4 instruction causes a general-
protection fault (#GP). The following alternative mechanisms allow software to discover the enabling of the XSAVE
feature set regardless of CPL:

The value of CR4.0SXSAVE is returned in CPUID.1:ECX.0OSXSAVE[bit 27]. If software determines that
CPUID.1:ECX.0SXSAVE = 1, the processor supports the XSAVE feature set and the feature set has been
enabled in CR4.

Executing the XGETBYV instruction with ECX = 0 returns the value of XCRO in EDX:EAX. XGETBV can be
executed if CR4.0SXSAVE = 1 (if CPUID.1:ECX.0OSXSAVE = 1), regardless of CPL.

Thus, software can use the following algorithm to determine the support and enabling for the XSAVE feature set:

1.

Use CPUID to discover the value of CPUID.1:ECX.OSXSAVE.

— If the bit is 0, either the XSAVE feature set is not supported by the processor or has not been enabled by
software. Either way, the XSAVE feature set is not available, nor are XSAVE-enabled features such as AVX.

1.

If XCRO[3] = O, executions of CALL, RET, JMP, and Jcc do not initialize the bounds registers.

2. Bit 8 and bit 13 correspond to supervisor state components. Since bits can be set in XCRO only for user state components, those

bits of XCRO must be 0.

Vol.1T 13-5

MANAGING STATE USING THE XSAVE FEATURE SET

— Ifthe bitis 1, the processor supports the XSAVE feature set — including the XGETBYV instruction — and it
has been enabled by software. The XSAVE feature set can be used to manage x87 state (because XCRO[0]
is always 1). Software requiring more detailed information can go on to the next step.

2. Execute XGETBV with ECX = 0 to discover the value of XCRO. If XCRO[1] = 1, the XSAVE feature set can be
used to manage SSE state. If XCRO[2] = 1, the XSAVE feature set can be used to manage AVX state and
software can execute AVX instructions. If XCRO[4:3] is 11b, the XSAVE feature set can be used to manage MPX
state and software can execute MPX instructions. If XCRO[7:5] is 111b, the XSAVE feature set can be used to
manage AVX-512 state and software can execute AVX-512 instructions. If XCRO[9] = 1, the XSAVE feature set
can be used to manage PKRU state.

The IA32_XSS MSR (with MSR index DAOH) is zero coming out of RESET. If CR4.0SXSAVE = 1,
CPUID.(EAX=0DH,ECX=1):EAX[3] = 1, and CPL = 0, executing the WRMSR instruction with ECX = DAOH writes
the 64-bit value in EDX:EAX to the IA32_XSS MSR (EAX is written to IA32_XSS[31:0] and EDX to
IA32_XSS[63:32]). The following items provide details regarding individual bits in the IA32_XSS MSR:

® JA32_XSS[8] is associated with PT state (see Section 13.5.6). Software can use XSAVES and XRSTORS to
manage PT state only if IA32_XSS[8] = 1. The value of IA32_XSS[8] does not determine whether software can
use Intel Processor Trace (the feature can be used even if IA32_XSS[8] = 0).

® IA32_XSS[13] is associated with HDC state (see Section 13.5.8). Software can use XSAVES and XRSTORS to
manage HDC state only if IA32_XSS[13] = 1. The value of IA32_XSS[13] does not determine whether software
can use hardware duty cycling (the feature can be used even if IA32_XSS[13] = 0).

® TJA32_XSS[63:14], IA32_XSS[12:9] and IA32_XSS[7:0] are reserved.! Executing the WRMSR instruction
causes a general-protection fault (#GP) if ECX = DAOH and any corresponding bit in EDX:EAX is not 0. These
bits in XCRO are all 0 coming out of RESET.

The IA32_XSS MSR is 0 coming out of RESET.
There is no mechanism by which software operating with CPL > 0 can discover the value of the IA32_XSS MSR.

13.4 XSAVE AREA

The XSAVE feature set includes instructions that save and restore the XSAVE-managed state components to and
from memory: XSAVE, XSAVEOPT, XSAVEC, and XSAVES (for saving); and XRSTOR and XRSTORS (for restoring).
The processor organizes the state components in a region of memory called an XSAVE area. Each of the save and
restore instructions takes a memory operand that specifies the 64-byte aligned base address of the XSAVE area on
which it operates.

Every XSAVE area has the following format:

®* The legacy region. The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base
address. It is used to manage the state components for x87 state and SSE state. The legacy region is described
in more detail in Section 13.4.1.

® The XSAVE header. The XSAVE header of an XSAVE area comprises the 64 bytes starting at an offset of 512
bytes from the area’s base address. The XSAVE header is described in more detail in Section 13.4.2.

®* The extended region. The extended region of an XSAVE area starts at an offset of 576 bytes from the area’s
base address. It is used to manage the state components other than those for x87 state and SSE state. The
extended region is described in more detail in Section 13.4.3. The size of the extended region is determined by
which state components the processor supports and which bits have been set in XCRO and IA32_XSS (see
Section 13.3).

13.4.1 Legacy Region of an XSAVE Area

The legacy region of an XSAVE area comprises the 512 bytes starting at the area’s base address. It has the same
format as the FXSAVE area (see Section 10.5.1). The XSAVE feature set uses the legacy area for x87 state (state

1. Bit 9 and bits 7:0 correspond to user state components. Since bits can be set in the IA32_XSS MSR only for supervisor state compo-
nents, those bits of the MSR must be 0.

13-6 Vol.1

MANAGING STATE USING THE XSAVE FEATURE SET

component 0) and SSE state (state component 1). Table 13-1 illustrates the format of the first 416 bytes of the
legacy region of an XSAVE area.

Table 13-1. Format of the Legacy Region of an XSAVE Area

15 14 13 12 11 10 ‘ 9 8 7 6 5 4 3 2 1 0
FIP[63:48] or F||E[CLLS7:3;] FIP[31:0] FOP Rsvd. | FTW FSW FCW 0
MXCSR_MASK MXCSR FOPI63:48] FDE[D457‘:’£ 2] FDP[31:0] 16
Reserved STO/MMO 32
Reserved ST1/MM1 48
Reserved ST2/MM2 64
Reserved ST3/MM3 80
Reserved ST4/MM4 96
Reserved ST5/MM5 112
Reserved ST6/MM6 128
Reserved ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
XMM8 288
XMM9 304
XMM10 320
XMM11 336
XMM12 352
XMM13 368
XMM14 384
XMM15 400

The x87 state component comprises bytes 23:0 and bytes 159:32. The SSE state component comprises
bytes 31:24 and bytes 415:160. The XSAVE feature set does not use bytes 511:416; bytes 463:416 are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the legacy
region of an XSAVE area.

13.4.2

XSAVE Header

The XSAVE header of an XSAVE area comprises the 64 bytes starting at offset 512 from the area’s base address:

® Bytes 7:0 of the XSAVE header is a state-component bitmap (see Section 13.1) called XSTATE_BV. It
identifies the state components in the XSAVE area.

Vol. 1

13-7

MANAGING STATE USING THE XSAVE FEATURE SET

® Bytes 15:8 of the XSAVE header is a state-component bitmap called XCOMP_BV. It is used as follows:

— XCOMP_BV[63] indicates the format of the extended region of the XSAVE area (see Section 13.4.3). If it is
clear, the standard format is used. If it is set, the compacted format is used; XCOMP_BV[62:0] provide
format specifics as specified in Section 13.4.3.

— XCOMP_BV[63] determines which form of the XRSTOR instruction is used. If the bit is set, the compacted
form is used; otherwise, the standard form is used. See Section 13.8.

— All bits in XCOMP_BYV should be 0 if the processor does not support the compaction extensions to the XSAVE
feature set.

®* Bytes 63:16 of the XSAVE header are reserved.

Section 13.7 through Section 13.9 provide details of how instructions in the XSAVE feature set use the XSAVE
header of an XSAVE area.

13.4.3 Extended Region of an XSAVE Area

The extended region of an XSAVE area starts at byte offset 576 from the area’s base address. The size of the
extended region is determined by which state components the processor supports and which bits have been set in
XCRO | IA32_XSS (see Section 13.3).

The XSAVE feature set uses the extended area for each state component i, where i > 2. The following state compo-
nents are currently supported in the extended area: state component 2 contains AVX state; state components 5-7
contain AVX-512 state; and state component 9 contains PKRU state.

The extended region of the an XSAVE area may have one of two formats. The standard format is supported by all
processors that support the XSAVE feature set; the compacted format is supported by those processors that
support the compaction extensions to the XSAVE feature set (see Section 13.2). Bit 63 of the XCOMP_BYV field in
the XSAVE header (see Section 13.4.2) indicates which format is used.

The following items describe the two possible formats of the extended region:

®* Standard format. Each state componentii (i > 2) is located at the byte offset from the base address of the
XSAVE area enumerated in CPUID.(EAX=0DH,ECX=i):EBX. (CPUID.(EAX=0DH,ECX=i):EAX enumerates the
number of bytes required for state component i.

® Compacted format. Each state componenti (i > 2) is located at a byte offset from the base address of the
XSAVE area based on the XCOMP_BYV field in the XSAVE header:
— If XCOMP_BVIi] = 0, state component i is not in the XSAVE area.

— If XCOMP_BVIi] = 1, state component i is located at a byte offset location; from the base address of the
XSAVE area, where location; is determined by the following items:

e If XCOMP_BV[j] = 0 for every j, 2 <j < i, location, is 576. (This item applies if i is the first bit set in
bits 62:2 of the XCOMP_BYV; it implies that state component i is located at the beginning of the
extended region.)

¢ Otherwise, let j, 2 <j < i, be the greatest value such that XCOMP_BV[j] = 1. Then location, is
determined by the following values: locationj; size;, as enumerated in CPUID.(EAX=0DH,ECX=j):EAX;
and the value of align,, as enumerated in CPUID.(EAX=0DH,ECX=i):ECX[1]:

— If align; = 0, location; = location; + size;. (This item implies that state component i is located
immediately following the preceding state component whose bit is set in XCOMP_BV.)

— If align; = 1, location; = ceiling(location; + size;, 64). (This item implies that state component i is
located on the next 64-byte boundary following the preceding state component whose bit is set in
XCOMP_BV.)

13.5 XSAVE-MANAGED STATE

The section provides details regarding how the XSAVE feature set interacts with the various XSAVE-managed state
components.

13-8 Vol.1

MANAGING STATE USING THE XSAVE FEATURE SET

Unless otherwise state, the state pertaining to a particular state component is saved beginning at byte 0 of the
section of the XSAVE are corresponding to that state component.

13.5.1 Xx87 State

Instructions in the XSAVE feature set can manage the same state of the x87 FPU execution environment (x87
state) that can be managed using the FXSAVE and FXRSTOR instructions. They organize all x87 state as a user
state component in the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in

Table 13-1; the x87 state is listed below, along with details of its interactions with the XSAVE feature set:

® Bytes 1:0, 3:2, 7:6. These are used for the x87 FPU Control Word (FCW), the x87 FPU Status Word (FSW), and
the x87 FPU Opcode (FOP), respectively.

®* Byte 4 is used for an abridged version of the x87 FPU Tag Word (FTW). The following items describe its usage:

— Foreachj, 0 <j<7, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 0 into bit j of byte 4 if x87 FPU data
register STj has a empty tag; otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save a 1 into bit j of
byte 4.

— Foreachj, 0 <j<7,XRSTOR and XRSTORS establish the tag value for x87 FPU data register STj as follows.
If bit j of byte 4 is 0, the tag for STj in the tag register for that data register is marked empty (11B);
otherwise, the x87 FPU sets the tag for STj based on the value being loaded into that register (see below).

®* Bytes 15:8 are used as follows:
— If the instruction has no REX prefix, or if REX.W = 0:
* Bytes 11:8 are used for bits 31:0 of the x87 FPU Instruction Pointer Offset (FIP).

e If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 13:12 are used for x87 FPU Instruction Pointer
Selector (FCS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H, and
XRSTOR and XRSTORS ignore them.

* Bytes 15:14 are not used.
— If the instruction has a REX prefix with REX.W = 1, bytes 15:8 are used for the full 64 bits of FIP.
® Bytes 23:16 are used as follows:
— If the instruction has no REX prefix, or if REX.W = 0:
* Bytes 19:16 are used for bits 31:0 of the x87 FPU Data Pointer Offset (FDP).

e If CPUID.(EAX=07H,ECX=0H):EBX[bit 13] = 0, bytes 21:20 are used for x87 FPU Data Pointer Selector
(FDS). Otherwise, XSAVE, XSAVEOPT, XSAVEC, and XSAVES save these bytes as 0000H; and XRSTOR
and XRSTORS ignore them.

* Bytes 23:22 are not used.
— If the instruction has a REX prefix with REX.W = 1, bytes 23:16 are used for the full 64 bits of FDP.
®* Bytes 31:24 are used for SSE state (see Section 13.5.2).

® Bytes 159:32 are used for the registers ST0-ST7 (MM0-MM7). Each of the 8 register is allocated a 128-bit
region, with the low 80 bits used for the register and the upper 48 bits unused.

x87 state is XSAVE-managed but the x87 FPU feature is not XSAVE-enabled. The XSAVE feature set can operate on
x87 state only if the feature set is enabled (CR4.0SXSAVE = 1).1 Software can otherwise use x87 state even if the
XSAVE feature set is not enabled.

13.5.2 SSE State

Instructions in the XSAVE feature set can manage the registers used by the streaming SIMD extensions (SSE
state) just as the FXSAVE and FXRSTOR instructions do. They organize all SSE state as a user state component in
the legacy region of the XSAVE area (see Section 13.4.1). This region is illustrated in Table 13-1; the SSE state is
listed below, along with details of its interactions with the XSAVE feature set:

1. The processor ensures that XCRO[0] is always 1.

Vol.1T 13-9

MANAGING STATE USING THE XSAVE FEATURE SET

® Bytes 23:0 are used for x87 state (see Section 13.5.1).

® Bytes 27:24 are used for the MXCSR register. XRSTOR and XRSTORS generate general-protection faults (#GP)
in response to attempts to set any of the reserved bits of the MXCSR register.!

® Bytes 31:28 are used for the MXCSR_MASK value. XRSTOR and XRSTORS ignore this field.
® Bytes 159:32 are used for x87 state.
® Bytes 287:160 are used for the registers XMM0-XMM7.

® Bytes 415:288 are used for the registers XMM8-XMM15. These fields are used only in 64-bit mode. Executions
of XSAVE, XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify these bytes; executions of
XRSTOR and XRSTORS outside 64-bit mode do not update XMM8-XMM15. See Section 13.13.

SSE state is XSAVE-managed but the SSE feature is not XSAVE-enabled. The XSAVE feature set can operate on SSE
state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage SSE state
(XCRO[1] = 1). Software can otherwise use SSE state even if the XSAVE feature set is not enabled or has not been
configured to manage SSE state.

13.5.3 AVX State

The register state used by the Intel® Advanced Vector Extensions (AVX) comprises the MXCSR register and 16 256-
bit vector registers called YMM0-YMM15. The low 128 bits of each register YMMi is identical to the SSE register
XMMi. Thus, the new state register state added by AVX comprises the upper 128 bits of the registers YMMO-
YMM15. These 16 128-bit values are denoted YMMO_H-YMM15_H and are collectively called AVX state.

As noted in Section 13.1, the XSAVE feature set manages AVX state as user state component 2. Thus, AVX state is
located in the extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=2):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for AVX state (when the standard format
of the extended region is used). CPUID.(EAX=0DH,ECX=2):EAX enumerates the size (in bytes) required for AVX
state.

The XSAVE feature set partitions YMMO_H-YMM15_H in a manner similar to that used for the XMM registers (see
Section 13.5.2). Bytes 127:0 of the AVX-state section are used for YMMO_H-YMM7_H. Bytes 255:128 are used for
YMM8_H-YMM15_H, but they are used only in 64-bit mode. Executions of XSAVE, XSAVEOPT, XSAVEC, and
XSAVES outside 64-bit mode do not modify bytes 255:128; executions of XRSTOR and XRSTORS outside 64-bit
mode do not update YMM8_H-YMM15_H. See Section 13.13. In general, bytes 16i+15:16i are used for YMMi_H
(for 0 <i<15).

AVX state is XSAVE-managed and the AVX feature is XSAVE-enabled. The XSAVE feature set can operate on AVX
state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage AVX state
(XCRO[2] = 1). AVX instructions cannot be used unless the XSAVE feature set is enabled and has been configured
to manage AVX state.

13.5.4 MPX State

The register state used by the Intel® Memory Protection Extensions (MPX) comprises the 4 128-bit bounds regis-
ters BNDO-BND3 (BNDREGS state); and the 64-bit user-mode configuration register BNDCFGU and the 64-bit
MPX status register BNDSTATUS (collectively, BNDCSR state). Together, these two user state components
compose MPX state.

As noted in Section 13.1, the XSAVE feature set manages MPX state as state components 3-4. Thus, MPX state is
located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how these state
components are organized in this region:

* BNDREGS state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=3):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for BNDREGS state (when the

1. While MXCSR and MXCSR_MASK are part of SSE state, their treatment by the XSAVE feature set is not the same as that of the XMM
registers. See Section 13.7 through Section 13.11 for details.

13-10 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

standard format of the extended region is used). CPUID.(EAX=0DH,ECX=3):EAX enumerates the size (in
bytes) required for BNDREGS state. The BNDREGS section is used for the 4 128-bit bound registers BNDO-
BND3, with bytes 16i+15:16i being used for BNDi.

¢* BNDCSR state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=4):EBX enumerates the offset of the section of the extended
region of the XSAVE area used for BNDCSR state (when the standard format of the extended region is used).
CPUID.(EAX=0DH,ECX=4):EAX enumerates the size (in bytes) required for BNDCSR state. In the BNDSCR
section, bytes 7:0 are used for BNDCFGU and bytes 15:8 are used for BNDSTATUS.

Both components of MPX state are XSAVE-managed and the MPX feature is XSAVE-enabled. The XSAVE feature set
can operate on MPX state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage
MPX state (XCRO[4:3] = 11b). MPX instructions cannot be used unless the XSAVE feature set is enabled and has
been configured to manage MPX state.

13.5.5 AVX-512 State

The register state used by the Intel® Advanced Vector Extensions 512 (AVX-512) comprises the MXCSR register,
the 8 64-bit opmask registers k0-k7, and 32 512-bit vector registers called ZMM0-ZMM31. For each i, 0 <=i <=
15, the low 256 bits of register ZMMi is identical to the AVX register YMMi. Thus, the new state register state added
by AVX comprises the following user state components:

®* The opmask registers, collectively called opmask state.

® The upper 256 bits of the registers ZMM0-ZMM15. These 16 256-bit values are denoted ZMM0_H-ZMM15_H
and are collectively called ZMM_Hi256 state.

® The 16 512-bit registers ZMM16-ZMM31, collectively called Hi1l6_ZMM state.
Together, these three state components compose AVX-512 state.

As noted in Section 13.1, the XSAVE feature set manages AVX-512 state as state components 5-7. Thus, AVX-512
state is located in the extended region of the XSAVE area (see Section 13.4.3). The following items detail how
these state components are organized in this region:

® Opmask state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=5):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for opmask state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=5):EAX enumerates the size (in bytes)
required for opmask state. The opmask section is used for the 8 64-bit bound registers k0-k7, with
bytes 8i+7:8i being used for ki.

* ZMM_Hi256 state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=6):EBX enumerates the offset of the section of the extended
region of the XSAVE area used for ZMM_Hi256 state (when the standard format of the extended region is
used). CPUID.(EAX=0DH,ECX=6):EAX enumerates the size (in bytes) required for ZMM_Hi256 state.

The XSAVE feature set partitions ZMM0_H-ZMM15_H in a manner similar to that used for the XMM registers
(see Section 13.5.2). Bytes 255:0 of the ZMM_Hi256-state section are used for ZMM0_H-ZMM7_H.

Bytes 511:256 are used for ZMM8_H-ZMM15_H, but they are used only in 64-bit mode. Executions of XSAVE,
XSAVEOPT, XSAVEC, and XSAVES outside 64-bit mode do not modify bytes 511:256; executions of XRSTOR
and XRSTORS outside 64-bit mode do not update ZMM8_H-ZMM15_H. See Section 13.13. In general,

bytes 32i+31:32i are used for ZMMi_H (for 0 <i < 15).

¢* Hil6_ZMM state.
As noted in Section 13.2, CPUID.(EAX=0DH,ECX=7):EBX enumerates the offset of the section of the extended
region of the XSAVE area used for Hil6_ZMM state (when the standard format of the extended region is used).
CPUID.(EAX=0DH,ECX=7):EAX enumerates the size (in bytes) required for Hi16_ZMM state.

The XSAVE feature set accesses Hi1l6_ZMM state only in 64-bit mode. Executions of XSAVE, XSAVEOPT,
XSAVEC, and XSAVES outside 64-bit mode do not modify the Hil6_ZMM section; executions of XRSTOR and
XRSTORS outside 64-bit mode do not update ZMM16-ZMM31. See Section 13.13. In general,

bytes 64(i-16)+63:64(i-16) are used for ZMMi (for 16 <i < 31).

All three components of AVX-512 state are XSAVE-managed and the AVX-512 feature is XSAVE-enabled. The
XSAVE feature set can operate on AVX-512 state only if the feature set is enabled (CR4.0SXSAVE = 1) and has

Vol. T 13-11

MANAGING STATE USING THE XSAVE FEATURE SET

been configured to manage AVX-512 state (XCRO[7:5] = 111b). AVX-512 instructions cannot be used unless the
XSAVE feature set is enabled and has been configured to manage AVX-512 state.

13.5.6 PT State

The register state used by Intel Processor Trace (PT state) comprises the following 9 MSRs: IA32_RTIT_CTL,
IA32_RTIT_OUTPUT_BASE, IA32_RTIT_OUTPUT_MASK_PTRS, IA32_RTIT_STATUS, IA32_RTIT_CR3_MATCH,
IA32_RTIT_ADDRO_A, IA32_RTIT_ADDRO_B, IA32_RTIT_ADDR1_A, and IA32_RTIT_ADDR1_B.!

As noted in Section 13.1, the XSAVE feature set manages PT state as supervisor state component 8. Thus, PT state
is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2,
CPUID.(EAX=0DH,ECX=8):EAX enumerates the size (in bytes) required for PT state. The MSRs are each allocated
8 bytes in the state component in the order given above. Thus, IA32_RTIT_CTL is at byte offset O,
IA32_RTIT_OUTPUT_BASE at byte offset 8, etc. Any locations in the state component at or beyond byte offset 72
are reserved.

PT state is XSAVE-managed but Intel Processor Trace is not XSAVE-enabled. The XSAVE feature set can operate on
PT state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage PT state
(IA32_XSS[8] = 1). Software can otherwise use Intel Processor Trace and access its MSRs (using RDMSR and
WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage PT state.

The following items describe special treatment of PT state by the XSAVES and XRSTORS instructions:

® If XSAVES saves PT state, the instruction clears IA32_RTIT_CTL.TraceEn (bit 0) after saving the value of the
IA32_RTIT_CTL MSR and before saving any other PT state. If XSAVES causes a fault or a VM exit, it restores
IA32_RTIT_CTL.TraceEn to its original value.

® If XSAVES saves PT state, the instruction saves zeroes in the reserved portions of the state component.

* If XRSTORS would restore (or initialize) PT state and IA32_RTIT_CTL.TraceEn = 1, the instruction causes a
general-protection exception (#GP) before modifying PT state.

* If XRSTORS causes an exception or a VM exit, it does so before any modification to IA32_RTIT_CTL.TraceEn
(even if it has loaded other PT state).

13.5.7 PKRU State

The register state used by the protection-key feature (PKRU state) is the 32-bit PKRU register. As noted in Section
13.1, the XSAVE feature set manages PKRU state as user state component 9. Thus, PKRU state is located in the
extended region of the XSAVE area (see Section 13.4.3).

As noted in Section 13.2, CPUID.(EAX=0DH,ECX=9):EBX enumerates the offset (in bytes, from the base of the
XSAVE area) of the section of the extended region of the XSAVE area used for PKRU state (when the standard
format of the extended region is used). CPUID.(EAX=0DH,ECX=9):EAX enumerates the size (in bytes) required for
PKRU state. The XSAVE feature set uses bytes 3:0 of the PK-state section for the PKRU register.

PKRU state is XSAVE-managed but the protection-key feature is not XSAVE-enabled. The XSAVE feature set can
operate on PKRU state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage
PKRU state (XCRO[9] = 1). Software can otherwise use protection keys and access PKRU state even if the XSAVE
feature set is not enabled or has not been configured to manage PKRU state.

The value of the PKRU register determines the access rights for user-mode linear addresses. (See Section 4.6,
“Access Rights,” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.) The access rights
that pertain to an execution of the XRSTOR and XRSTORS instructions are determined by the value of the register
before the execution and not by any value that the execution might load into the PKRU register.

1. These MSRs might not be supported by every processor that supports Intel Processor Trace. Software can use the CPUID instruction
to discover which are supported; see Section 35.3.1, “Detection of Intel Processor Trace and Capability Enumeration,” of Intel® 64
and IA-32 Architectures Software Developer’s Manual, VVolume 3C.

13-12 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

13.5.8 HDC State
The register state used by hardware duty cycling (HDC state) comprises the IA32_PM_CTL1 MSR.

As noted in Section 13.1, the XSAVE feature set manages HDC state as supervisor state component 13. Thus, HDC
state is located in the extended region of the XSAVE area (see Section 13.4.3). As noted in Section 13.2,
CPUID.(EAX=0DH,ECX=13):EAX enumerates the size (in bytes) required for PT state. The IA32_PM_CTL1 MSR is
allocated 8 bytes at byte offset 0 in the state component.

HDC state is XSAVE-managed but hardware duty cycling is not XSAVE-enabled. The XSAVE feature set can operate
on HDC state only if the feature set is enabled (CR4.0SXSAVE = 1) and has been configured to manage HDC state
(IA32_XSS[13] = 1). Software can otherwise use hardware duty cycle and access the IA32_PM_CTL1 MSR (using
RDMSR and WRMSR) even if the XSAVE feature set is not enabled or has not been configured to manage HDC state.

13.6 PROCESSOR TRACKING OF XSAVE-MANAGED STATE

The XSAVEOPT, XSAVEC, and XSAVES instructions use two optimizations to reduce the amount of data that they
write to memory. They avoid writing data for any state component known to be in its initial configuration (the init
optimization). In addition, if either XSAVEOPT or XSAVES is using the same XSAVE area as that used by the most
recent execution of XRSTOR or XRSTORS, it may avoid writing data for any state component whose configuration
is known not to have been modified since then (the modified optimization). (XSAVE does not use these optimi-
zations, and XSAVEC does not use the modified optimization.) The operation of XSAVEOPT, XSAVEC, and XSAVES
are described in more detail in Section 13.9 through Section 13.11.

A processor can support the init and modified optimizations with special hardware that tracks the state components
that might benefit from those optimizations. Other implementations might not include such hardware; such a
processor would always consider each such state component as not in its initial configuration and as modified since
the last execution of XRSTOR or XRSTORS.

The following notation describes the state of the init and modified optimizations:

®* XINUSE denotes the state-component bitmap corresponding to the init optimization. If XINUSE[i] = 0, state
component i is known to be in its initial configuration; otherwise XINUSE[i] = 1. It is possible for XINUSE[i] to
be 1 even when state component i is in its initial configuration. On a processor that does not support the init
optimization, XINUSE[i] is always 1 for every value of i.

Executing XGETBV with ECX = 1 returns in EDX:EAX the logical-AND of XCRO and the current value of the
XINUSE state-component bitmap. Such an execution of XGETBV always sets EAX[1] to 1 if XCRO[1] = 1 and
MXCSR does not have its RESET value of 1F80H. Section 13.2 explains how software can determine whether a
processor supports this use of XGETBV.

®* XMODIFIED denotes the state-component bitmap corresponding to the modified optimization. If
XMODIFIEDJi] = 0, state component i is known not to have been modified since the most recent execution of
XRSTOR or XRSTORS; otherwise XMODIFIED[i] = 1. It is possible for XMODIFIED[i] to be 1 even when state
component i has not been modified since the most recent execution of XRSTOR or XRSTORS. On a processor
that does not support the modified optimization, XMODIFIED[i] is always 1 for every value of i.

A processor that implements the modified optimization saves information about the most recent execution of
XRSTOR or XRSTORS in a quantity called XRSTOR__INFO, a 4-tuple containing the following: (1) the CPL;

(2) whether the logical processor was in VMX non-root operation; (3) the linear address of the XSAVE area; and
(4) the XCOMP_BY field in the XSAVE area. An execution of XSAVEOPT or XSAVES uses the modified optimization
only if that execution corresponds to XRSTOR_INFO on these four parameters.

This mechanism implies that, depending on details of the operating system, the processor might determine that an
execution of XSAVEOPT by one user application corresponds to an earlier execution of XRSTOR by a different appli-
cation. For this reason, Intel recommends the application software not use the XSAVEOPT instruction.

The following items specify the initial configuration each state component (for the purposes of defining the XINUSE
bitmap):

® x87 state. x87 state is in its initial configuration if the following all hold: FCW is 037FH; FSW is 0000H; FTW is
FFFFH; FCS and FDS are each 0000H; FIP and FDP are each 00000000_00000000H; each of STO-ST7 is
0000_00000000_00000000H.

Vol.1T 13-13

MANAGING STATE USING THE XSAVE FEATURE SET

® SSE state. In 64-bit mode, SSE state is in its initial configuration if each of XMM0-XMM15 is 0. Outside 64-bit
mode, SSE state is in its initial configuration if each of XMM0-XMM7 is 0. XINUSE[1] pertains only to the state
of the XMM registers and not to MXCSR. An execution of XRSTOR or XRSTORS outside 64-bit mode does not
update XMM8-XMM15. (See Section 13.13.)

®* AVX state. In 64-bit mode, AVX state is in its initial configuration if each of YMMO_H-YMM15_H is 0. Outside
64-bit mode, AVX state is in its initial configuration if each of YMMO_H-YMM7_H is 0. An execution of XRSTOR
or XRSTORS outside 64-bit mode does not update YMM8_H-YMM15_H. (See Section 13.13.)

®* BNDREGS state. BNDREGS state is in its initial configuration if the value of each of BNDO-BND3 is 0.
®* BNDCSR state. BNDCSR state is in its initial configuration if BNDCFGU and BNDCSR each has value 0.
®* Opmask state. Opmask state is in its initial configuration if each of the opmask registers k0-k7 is 0.

* ZMM_Hi256 state. In 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMMO0O_H-
ZMM15_H is 0. Outside 64-bit mode, ZMM_Hi256 state is in its initial configuration if each of ZMM0_H-ZMM7_H
is 0. An execution of XRSTOR or XRSTORS outside 64-bit mode does not update ZMM8_H-ZMM15_H. (See
Section 13.13.)

®* Hil6_ZMM state. In 64-bit mode, Hil6_ZMM state is in its initial configuration if each of ZMM16-ZMM31 is 0.
Outside 64-bit mode, Hi16_ZMM state is always in its initial configuration. An execution of XRSTOR or XRSTORS
outside 64-bit mode does not update ZMM31-ZMM31. (See Section 13.13.)

®* PT state. PT state is in its initial configuration if each of the 9 MSRs is 0.
®* PKRU state. PKRU state is in its initial configuration if the value of the PKRU is 0.
® HDC state. HDC state is in its initial configuration if the value of the IA32_PM_CTL1 MSR is 0.

13.7 OPERATION OF XSAVE

The XSAVE instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCRO and the instruction mask is the requested-feature bitmap (RFBM) of the user
state components to be saved.

The following conditions cause execution of the XSAVE instruction to generate a fault:

* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

* If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.!

If none of these conditions cause a fault, execution of XSAVE reads the XSTATE_BYV field of the XSAVE header (see
Section 13.4.2) and writes it back to memory, setting XSTATE_BV[i] (0 <i < 63) as follows:

e If RFBM[i] = 0, XSTATE_BV[i] is not changed.

* If RFBMJ[i] = 1, XSTATE_BV[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the
processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If state component iisin its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may be
written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be
written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If state component i is not in its initial configuration, XINUSE[i] = 1 and XSTATE_BV[i] is written with 1.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVE instruction does not write any part of the XSAVE header other than the XSTATE_BV field; in particular,
it does not write to the XCOMP_BYV field.

1. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

13-14 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

Execution of XSAVE saves into the XSAVE area those state components corresponding to bits that are set in RFBM.
State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 <i< 62, is located in the extended region; the XSAVE instruction always uses the standard format
for the extended region (see Section 13.4.3).

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
RFBM[1]. However, the XSAVE instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] = 0).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

13.8 OPERATION OF XRSTOR

The XRSTOR instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical-AND of XCRO and the instruction mask is the requested-feature bitmap (RFBM) of the user
state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
®* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

* If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.

After checking for these faults, the XRSTOR instruction reads the XCOMP_BYV field in the XSAVE area’s XSAVE
header (see Section 13.4.2). If XCOMP_BV[63] = 0, the standard form of XRSTOR is executed (see Section
13.8.1); otherwise, the compacted form of XRSTOR is executed (see Section 13.8.2).2

1

See Section 13.2 for details of how to determine whether the compacted form of XRSTOR is supported.

13.8.1 Standard Form of XRSTOR

The standard from of XRSTOR performs additional fault checking. Either of the following conditions causes a
general-protection exception (#GP):

®* The XSTATE_BV field of the XSAVE header sets a bit that is not set in XCRO.

* Bytes 23:8 of the XSAVE header are not all 0 (this implies that all bits in XCOMP_BV are 0).3

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTOR updates state component i based on the value of bit i in the XSTATE_BYV field of the XSAVE header:

* If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial
configuration of each state component.

The initial configuration of state component 1 pertains only to the XMM registers and not to MXCSR. See below
for the treatment of MXCSR

® If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area. See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation determined
by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.

1. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

2. If the processor does not support the compacted form of XRSTOR, it may execute the standard form of XRSTOR without first read-
ing the XCOMP_BYV field. A processor supports the compacted form of XRSTOR only if it enumerates
CPUID.(EAX=0DH,ECX=1).EAX[1] as 1.

3. Bytes 63:24 of the XSAVE header are also reserved. Software should ensure that bytes 63:16 of the XSAVE header are all 0 in any
XSAVE area. (Bytes 15:8 should also be O if the XSAVE area is to be used on a processor that does not support the compaction
extensions to the XSAVE feature set.)

Vol.1T 13-15

MANAGING STATE USING THE XSAVE FEATURE SET

State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 <i<62, is located in the extended region; the standard form of XRSTOR uses the standard
format for the extended region (see Section 13.4.3).

The MXCSR register is part of state component 1, SSE state (see Section 13.5.2). However, the standard form of
XRSTOR loads the MXCSR register from memory whenever the RFBM[1] (SSE) or RFBM[2] (AVX) is set, regardless
of the values of XSTATE_BV[1] and XSTATE_BV[2]. The standard form of XRSTOR causes a general-protection
exception (#GP) if it would load MXCSR with an illegal value.

13.8.2 Compacted Form of XRSTOR

The compacted from of XRSTOR performs additional fault checking. Any of the following conditions causes a #GP:
® The XCOMP_BYV field of the XSAVE header sets a bit in the range 62:0 that is not set in XCRO.

® The XSTATE_BYV field of the XSAVE header sets a bit (including bit 63) that is not set in XCOMP_BV.

®* Bytes 63:16 of the XSAVE header are not all 0.

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTOR updates state component i based on the value of bit i in the XSTATE_BYV field of the XSAVE header:

* If XSTATE_BVI[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial
configuration of each state component.

If XSTATE_BV[1] = 0, the compacted form XRSTOR initializes MXCSR to 1F80H. (This differs from the standard
from of XRSTOR, which loads MXCSR from the XSAVE area whenever either RFBM[1] or RFBM[2] is set.)

State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 —
even if XCOMP_BV[i] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

* If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.! See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation determined
by instruction prefixes. See Section 13.13 for details regarding faults caused by memory accesses.

State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 <i<62, is located in the extended region; the compacted form of the XRSTOR instruction uses
the compacted format for the extended region (see Section 13.4.3).

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] =
XSTATE_BV[i] = 1. The compacted form of XRSTOR does not consider RFBM[2] (AVX) when determining whether
to update MXCSR. (This is a difference from the standard form of XRSTOR.) The compacted form of XRSTOR causes
a general-protection exception (#GP) if it would load MXCSR with an illegal value.

13.8.3 XRSTOR and the Init and Modified Optimizations

Execution of the XRSTOR instruction causes the processor to update its tracking for the init and modified optimiza-
tions (see Section 13.6). The following items provide details:

®* The processor updates its tracking for the init optimization as follows:
— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV[i] = 0, state component i may be tracked as init; XINUSE[i] may be set to
0 or 1. (As noted in Section 13.6, a processor need not implement the init optimization for state component
i; a processor that does not do so implicitly maintains XINUSE[i] = 1 at all times.)

— If RFBMJi] = 1 and XSTATE_BV[i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.

®* The processor updates its tracking for the modified optimization and records information about the XRSTOR
execution for future interaction with the XSAVEOPT and XSAVES instructions (see Section 13.9 and Section
13.11) as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIEDIi] is set to 1.

1. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i] is
also 1.

13-16 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1. (As
noted in Section 13.6, a processor need not implement the modified optimization for state componenti; a
processor that does not do so implicitly maintains XMODIFIED[i] = 1 at all times.)

— XRSTOR_INFO is set to the 4-tuple {w,x,y,z), where w is the CPL (0); x is 1 if the logical processor is in VMX
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV. In
particular, the standard form of XRSTOR always sets z to all zeroes, while the compacted form of XRSTORS
never does so (because it sets at least bit 63 to 1).

13.9 OPERATION OF XSAVEOPT

The operation of XSAVEOPT is similar to that of XSAVE. Unlike XSAVE, XSAVEOPT uses the init optimization (by
which it may omit saving state components that are in their initial configuration) and the modified optimization (by
which it may omit saving state components that have not been modified since the last execution of XRSTOR); see
Section 13.6. See Section 13.2 for details of how to determine whether XSAVEOPT is supported.

The XSAVEOPT instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCRO and the instruction mask is the requested-feature bitmap (RFBM) of
the user state components to be saved.

The following conditions cause execution of the XSAVEOPT instruction to generate a fault:

* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

* If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.!

If none of these conditions cause a fault, execution of XSAVEOPT reads the XSTATE_BV field of the XSAVE header
(see Section 13.4.2) and writes it back to memory, setting XSTATE_BVT[i] (0 <i < 63) as follows:

* If RFBM[i] = 0, XSTATE_BV[i] is not changed.
* If RFBM[i] = 1, XSTATE_BVT[i] is set to the value of XINUSE[i]. Section 13.6 defines XINUSE to describe the

processor init optimization and specifies the initial configuration of each state component. The nature of that
optimization implies the following:

— If the state component is in its initial configuration, XINUSE[i] may be either 0 or 1, and XSTATE_BV[i] may
be written with either 0 or 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. Thus, XSTATE_BV[1] may be
written with 0 even if MXCSR does not have its RESET value of 1F80H.

— If the state component is not in its initial configuration, XSTATE_BV[i] is written with 1.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEOPT instruction does not write any part of the XSAVE header other than the XSTATE_BYV field; in partic-
ular, it does not write to the XCOMP_BYV field.

Execution of XSAVEOPT saves into the XSAVE area those state components corresponding to bits that are set in
RFBM (subject to the optimizations described below). State components 0 and 1 are located in the legacy region of
the XSAVE area (see Section 13.4.1). Each state component i, 2 <i <62, is located in the extended region; the
XSAVEOPT instruction always uses the standard format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEOPT performs two optimizations that reduce the amount of data written to memory:

1. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Vol.1T 13-17

MANAGING STATE USING THE XSAVE FEATURE SET

¢ Init optimization.
If XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). (See below for
exceptions made for MXCSR.)

®* Modified optimization.
Each execution of XRSTOR and XRSTORS establishes XRSTOR_INFO as a 4-tuple {w,x,y,z) (see Section 13.8.3

and Section 13.12). Execution of XSAVEOPT uses the modified optimization only if the following all hold for the
current value of XRSTOR_INFO:

— w = CPL;
— x = 1 if and only if the logical processor is in VMX non-root operation;
— vy is the linear address of the XSAVE area being used by XSAVEOPT; and

— zis 00000000_00000000H. (This last item implies that XSAVEOPT does not use the modified optimization
if the last execution of XRSTOR used the compacted form, or if an execution of XRSTORS followed the last
execution of XRSTOR.)

If XSAVEOPT uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state componenti is
not saved to the XSAVE area.

(In practice, the benefit of the modified optimization for state component i depends on how the processor is
tracking state component i; see Section 13.6. Limitations on the tracking ability may result in state component
i being saved even though is in the same configuration that was loaded by the previous execution of XRSTOR.)

Depending on details of the operating system, an execution of XSAVEOPT by a user application might use the
modified optimization when the most recent execution of XRSTOR was by a different application. Because of
this, Intel recommends the application software not use the XSAVEOPT instruction.

The MXCSR register and MXCSR_MASK are part of SSE state (see Section 13.5.2) and are thus associated with
bit 1 of RFBM. However, the XSAVEOPT instruction also saves these values when RFBM[2] = 1 (even if RFBM[1] =
0). The init and modified optimizations do not apply to the MXCSR register and MXCSR_MASK.

13.10 OPERATION OF XSAVEC

The operation of XSAVEC is similar to that of XSAVE. Two main differences are (1) XSAVEC uses the compacted
format for the extended region of the XSAVE area; and (2) XSAVEC uses the init optimization (see Section 13.6).
Unlike XSAVEOPT, XSAVEC does not use the modified optimization. See Section 13.2 for details of how to determine
whether XSAVEC is supported.

The XSAVEC instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. The logical (bitwise) AND of XCRO and the instruction mask is the requested-feature bitmap (RFBM) of
the user state components to be saved.

The following conditions cause execution of the XSAVEC instruction to generate a fault:

* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
®* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

* If the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP) occurs.!

If none of these conditions cause a fault, execution of XSAVEC writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 <i < 63) as follows:?2

* If RFBM[i] = 0, XSTATE_BV][i] is written as 0.

* If RFBMI[i] = 1, XSTATE_BVIi] is set to the value of XINUSE[i] (see below for an exception made for
XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state componenti is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.

. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.
2. Unlike the XSAVE and XSAVEOPT instructions, the XSAVEC instruction does not read the XSTATE_BV field of the XSAVE header.

13-18 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

— If state component i is not in its initial configuration, XSTATE_BV[i] is written with 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVEC writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

The XSAVEC instructions sets bit 63 of the XCOMP_BYV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVEC instruction does not write any part of the XSAVE header other than the XSTATE_BV
and XCOMP_BYV fields.

Execution of XSAVEC saves into the XSAVE area those state components corresponding to bits that are set in RFBM
(subject to the init optimization described below). State components 0 and 1 are located in the legacy region of the
XSAVE area (see Section 13.4.1). Each state component i, 2 <i<62, is located in the extended region; the XSAVEC
instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes. See Section 13.13 for details regarding faults caused by memory
accesses.

Execution of XSAVEC performs the init optimization to reduce the amount of data written to memory. If
XINUSE[i] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVEC writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0. Unlike the XSAVE instruction, RFBM[2] does not determine whether
XSAVEC saves MXCSR and MXCSR_MASK.

13.11 OPERATION OF XSAVES

The operation of XSAVES is similar to that of XSAVEC. The main differences are (1) XSAVES can be executed only
if CPL = 0; (2) XSAVES can operate on the state components whose bits are set in XCRO | IA32_XSS and can thus
operate on supervisor state components; and (3) XSAVES uses the modified optimization (see Section 13.6). See
Section 13.2 for details of how to determine whether XSAVES is supported.

The XSAVES instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCRO | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCRO and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be saved.

The following conditions cause execution of the XSAVES instruction to generate a fault:
* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
®* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

* IfCPL >1 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)
occurs.

If none of these conditions cause a fault, execution of XSAVES writes the XSTATE_BV field of the XSAVE header
(see Section 13.4.2), setting XSTATE_BV[i] (0 <i < 63) as follows:

* If RFBM[i] = 0, XSTATE_BV[i] is written as 0.

* If RFBMJ[i] = 1, XSTATE_BV][i] is set to the value of XINUSE[i] (see below for an exception made for
XSTATE_BV[1]). Section 13.6 defines XINUSE to describe the processor init optimization and specifies the
initial configuration of each state component. The nature of that optimization implies the following:

— If state component i is in its initial configuration, XSTATE_BV[i] may be written with either 0 or 1.
— If state component i is not in its initial configuration, XSTATE_BVT[i] is written with 1.

XINUSE[1] pertains only to the state of the XMM registers and not to MXCSR. However, if RFBM[1] = 1 and
MXCSR does not have the value 1F80H, XSAVES writes XSTATE_BV[1] as 1 even if XINUSE[1] = 0.

(As explained in Section 13.6, the initial configurations of some state components may depend on whether the
processor is in 64-bit mode.)

1. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

Vol.1T 13-19

MANAGING STATE USING THE XSAVE FEATURE SET

The XSAVES instructions sets bit 63 of the XCOMP_BYV field of the XSAVE header while writing RFBM[62:0] to
XCOMP_BV[62:0]. The XSAVES instruction does not write any part of the XSAVE header other than the XSTATE_BV
and XCOMP_BYV fields.

Execution of XSAVES saves into the XSAVE area those state components corresponding to bits that are set in RFBM
(subject to the optimizations described below). State components 0 and 1 are located in the legacy region of the
XSAVE area (see Section 13.4.1). Each state component i, 2 <i< 62, is located in the extended region; the XSAVES
instruction always uses the compacted format for the extended region (see Section 13.4.3).

See Section 13.5 for specifics for each state component and for details regarding mode-specific operation and
operation determined by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT
state by XSAVES. See Section 13.13 for details regarding faults caused by memory accesses.

Execution of XSAVES performs the init optimization to reduce the amount of data written to memory. If
XINUSETi] = 0, state component i is not saved to the XSAVE area (even if RFBM[i] = 1). However, if RFBM[1] = 1
and MXCSR does not have the value 1F80H, XSAVES writes saves all of state component 1 (SSE — including the
XMM registers) even if XINUSE[1] = 0.

Like XSAVEOPT, XSAVES may perform the modified optimization. Each execution of XRSTOR and XRSTORS estab-
lishes XRSTOR_INFO as a 4-tuple {w,x,y,z) (see Section 13.8.3 and Section 13.12). Execution of XSAVES uses the
modified optimization only if the following all hold:

* w=CPL;
® x =1 if and only if the logical processor is in VMX non-root operation;
® yis the linear address of the XSAVE area being used by XSAVEOPT; and

® z[63]is 1 and z[62:0] = RFBM[62:0]. (This last item implies that XSAVES does not use the modified optimi-
zation if the last execution of XRSTOR used the standard form and followed the last execution of XRSTORS.)

If XSAVES uses the modified optimization and XMODIFIED[i] = 0 (see Section 13.6), state component i is not
saved to the XSAVE area.

13.12 OPERATION OF XRSTORS

The operation of XRSTORS is similar to that of XRSTOR. Three main differences are (1) XRSTORS can be executed
only if CPL = 0; (2) XRSTORS can operate on the state components whose bits are set in XCRO | IA32_XSS and can
thus operate on supervisor state components; and (3) XRSTORS has only a compacted form (no standard form;
see Section 13.8). See Section 13.2 for details of how to determine whether XRSTORS is supported.

The XRSTORS instruction takes a single memory operand, which is an XSAVE area. In addition, the register pair
EDX:EAX is an implicit operand used as a state-component bitmap (see Section 13.1) called the instruction
mask. EDX:EAX & (XCRO | IA32_XSS) (the logical AND the instruction mask with the logical OR of XCRO and
IA32_XSS) is the requested-feature bitmap (RFBM) of the state components to be restored.

The following conditions cause execution of the XRSTOR instruction to generate a fault:
* If the XSAVE feature set is not enabled (CR4.0SXSAVE = 0), an invalid-opcode exception (#UD) occurs.
®* If CRO.TS[bit 3] is 1, a device-not-available exception (#NM) occurs.

® IfCPL > 0 or if the address of the XSAVE area is not 64-byte aligned, a general-protection exception (#GP)
1
occurs.

After checking for these faults, the XRSTORS instruction reads the first 64 bytes of the XSAVE header, including the
XSTATE_BV and XCOMP_BYV fields (see Section 13.4.2). A #GP occurs if any of the following conditions hold for the
values read:

* XCOMP_BV[63] = 0.

® XCOMP_BYV sets a bit in the range 62:0 that is not set in XCRO | IA32_XSS.
® XSTATE_BV sets a bit (including bit 63) that is not set in XCOMP_BV.

®* Bytes 63:16 of the XSAVE header are not all 0.

1. IfCRO.AM =1, CPL = 3, and EFLAGS.AC =1, an alignment-check exception (#AC) may occur instead of #GP.

13-20 Vol. 1

MANAGING STATE USING THE XSAVE FEATURE SET

If none of these conditions cause a fault, the processor updates each state component i for which RFBM[i] = 1.
XRSTORS updates state component i based on the value of bit i in the XSTATE_BYV field of the XSAVE header:

* If XSTATE_BV[i] = 0, the state component is set to its initial configuration. Section 13.6 specifies the initial
configuration of each state component. If XSTATE_BV[1] = 0, XRSTORS initializes MXCSR to 1F80H.

State component i is set to its initial configuration as indicated above if RFBM[i] = 1 and XSTATE_BV[i] = 0 —
even if XCOMP_BVIi] = 0. This is true for all values of i, including 0 (x87 state) and 1 (SSE state).

* If XSTATE_BV[i] = 1, the state component is loaded with data from the XSAVE area.l See Section 13.5 for
specifics for each state component and for details regarding mode-specific operation and operation determined
by instruction prefixes; in particular, see Section 13.5.6 for some special treatment of PT state by XRSTORS.
See Section 13.13 for details regarding faults caused by memory accesses.

If XRSTORS is restoring a supervisor state component, the instruction causes a general-protection exception
(#GP) if it would load any element of that component with an unsupported value (e.g., by setting a reserved bit
in an MSR) or if a bit is set in any reserved portion of the state component in the XSAVE area.

State components 0 and 1 are located in the legacy region of the XSAVE area (see Section 13.4.1). Each state
component i, 2 <i <62, is located in the extended region; XRSTORS uses the compacted format for the
extended region (see Section 13.4.3).

The MXCSR register is part of SSE state (see Section 13.5.2) and is thus loaded from memory if RFBM[1] =
XSTATE_BV[i] = 1. XRSTORS causes a general-protection exception (#GP) if it would load MXCSR with an
illegal value.

If an execution of XRSTORS causes an exception or a VM exit during or after restoring a supervisor state compo-
nent, each element of that state component may have the value it held before the XRSTORS execution, the value
loaded from the XSAVE area, or the element’s initial value (as defined in Section 13.6). See Section 13.5.6 for
some special treatment of PT state for the case in which XRSTORS causes an exception or a VM exit.

Like XRSTOR, execution of XRSTORS causes the processor to update is tracking for the init and modified optimiza-
tions (see Section 13.6 and Section 13.8.3). The following items provide details:

®* The processor updates its tracking for the init optimization as follows:
— If RFBM[i] = 0, XINUSE[i] is not changed.

— If RFBM[i] = 1 and XSTATE_BV][i] = 0, state component i may be tracked as init; XINUSE[i] may be set to
Oorl.

— If RFBM[i] = 1 and XSTATE_BV][i] = 1, state component i is tracked as not init; XINUSE[i] is set to 1.

®* The processor updates its tracking for the modified optimization and records information about the XRSTORS
execution for future interaction with the XSAVEOPT and XSAVES instructions as follows:

— If RFBM[i] = 0, state component i is tracked as modified; XMODIFIED[i] is set to 1.
— If RFBM[i] = 1, state component i may be tracked as unmodified; XMODIFIED[i] may be set to 0 or 1.

— XRSTOR_INFO is set to the 4-tuple {w,x,y,z), where w is the CPL; x is 1 if the logical processor is in VMX
non-root operation and 0 otherwise; y is the linear address of the XSAVE area; and z is XCOMP_BV (this
implies that z[63] = 1).

13.13 MEMORY ACCESSES BY THE XSAVE FEATURE SET

Each instruction in the XSAVE feature set operates on a set of XSAVE-managed state components. The specific set
of components on which an instruction operates is determined by the values of XCRO, the IA32_XSS MSR,
EDX:EAX, and (for XRSTOR and XRSTORS) the XSAVE header.

Section 13.4 provides the details necessary to determine the location of each state component for any execution of
an instruction in the XSAVE feature set. An execution of an instruction in the XSAVE feature set may access any
byte of any state component on which that execution operates.

1. Earlier fault checking ensured that, if the instruction has reached this point in execution and XSTATE_BV[i] is 1, then XCOMP_BV[i] is
also 1.

Vol. T 13-21

MANAGING STATE USING THE XSAVE FEATURE SET

Section 13.5 provides details of the different XSAVE-managed state components. Some portions of some of these
components are accessible only in 64-bit mode. Executions of XRSTOR and XRSTORS outside 64-bit mode will not
update those portions; executions of XSAVE, XSAVEC, XSAVEOPT, and XSAVES will not modify the corresponding
locations in memory.

Despite this fact, any execution of these instructions outside 64-bit mode may access any byte in any state compo-
nent on which that execution operates — even those at addresses corresponding to registers that are accessible
only in 64-bit mode. As result, such an execution may incur a fault due to an attempt to access such an address.

For example, an execution of XSAVE outside 64-bit mode may incur a page fault if paging does not map as
read/write the section of the XSAVE area containing state component 7 (Hi16_ZMM state) — despite the fact that
state component 7 can be accessed only in 64-bit mode.

13-22 Vol. 1

3. Updates to Chapter 16, Volume 1

Change bars show changes to Chapter 16 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 1: Basic Architecture.

Change to this chapter: Updates to Section 16.3.8.1 “Instruction Based Considerations”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

CHAPTER 16
PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION
EXTENSIONS

16.1 OVERVIEW

This chapter describes the software programming interface to the Intel® Transactional Synchronization Extensions
of the Intel 64 architecture.

Multithreaded applications take advantage of increasing number of cores to achieve high performance. However,
writing multi-threaded applications requires programmers to reason about data sharing among multiple threads.
Access to shared data typically requires synchronization mechanisms. These mechanisms ensure multiple threads
update shared data by serializing operations on the shared data, often through the use of a critical section
protected by a lock. Since serialization limits concurrency, programmers try to limit synchronization overheads.
They do this either through minimizing the use of synchronization or through the use of fine-grain locks; where
multiple locks each protect different shared data. Unfortunately, this process is difficult and error prone; a missed
or incorrect synchronization can cause an application to fail. Conservatively adding synchronization and using
coarser granularity locks, where a few locks each protect many items of shared data, helps avoid correctness prob-
lems but limits performance due to excessive serialization. While programmers must use static information to
determine when to serialize, the determination as to whether actually to serialize is best done dynamically.

Intel® Transactional Synchronization Extensions aim to improve the performance of lock-protected critical sections
while maintaining the lock-based programming model.

16.2 INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Intel® Transactional Synchronization Extensions (Intel® TSX) allow the processor to determine dynamically
whether threads need to serialize through lock-protected critical sections, and to perform serialization only when
required. This lets the hardware expose and exploit concurrency hidden in an application due to dynamically unnec-
essary synchronization through a technique known as lock elision.

With lock elision, the hardware executes the programmer-specified critical sections (also referred to as transac-
tional regions) transactionally. In such an execution, the lock variable is only read within the transactional region;
it is not written to (and therefore not acquired) with the expectation that the lock variable remains unchanged after
the transactional region, thus exposing concurrency.

If the transactional execution completes successfully, then the hardware ensures that all memory operations
performed within the transactional region will appear to have occurred instantaneously when viewed from other
logical processors, a process referred to as an atomic commit. Any updates performed within the transactional
region are made visible to other processors only on an atomic commit.

Since a successful transactional execution ensures an atomic commit, the processor can execute the programmer-
specified code section optimistically without synchronization. If synchronization was unnecessary for that specific
execution, execution can commit without any cross-thread serialization.

If the transactional execution is unsuccessful, the processor cannot commit the updates atomically. When this
happens, the processor will roll back the execution, a process referred to as a transactional abort. On a transac-
tional abort, the processor will discard all updates performed in the region, restore architectural state to appear as
if the optimistic execution never occurred, and resume execution non-transactionally. Depending on the policy in
place, lock elision may be retried or the lock may be explicitly acquired to ensure forward progress.

Intel TSX provides two software interfaces for programmers.

® Hardware Lock Elision (HLE) is a legacy compatible instruction set extension (comprising the XACQUIRE and
XRELEASE prefixes).

®* Restricted Transactional Memory (RTM) is a new instruction set interface (comprising the XBEGIN and XEND
instructions).

Vol. 1 16-1

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Programmers who would like to run Intel TSX-enabled software on legacy hardware would use the HLE interface to
implement lock elision. On the other hand, programmers who do not have legacy hardware requirements and who
deal with more complex locking primitives would use the RTM software interface of Intel TSX to implement lock
elision. In the latter case when using new instructions, the programmer must always provide a non-transactional
path (which would have code to eventually acquire the lock being elided) to execute following a transactional abort
and must not rely on the transactional execution alone.

In addition, Intel TSX also provides the XTEST instruction to test whether a logical processor is executing transac-
tionally, and the XABORT instruction to abort a transactional region.

A processor can perform a transactional abort for numerous reasons. A primary cause is due to conflicting accesses
between the transactionally executing logical processor and another logical processor. Such conflicting accesses
may prevent a successful transactional execution. Memory addresses read from within a transactional region
constitute the read-set of the transactional region and addresses written to within the transactional region consti-
tute the write-set of the transactional region. Intel TSX maintains the read- and write-sets at the granularity of a
cache line.

A conflicting data access occurs if another logical processor either reads a location that is part of the transactional
region’s write-set or writes a location that is a part of either the read- or write-set of the transactional region. We
refer to this as a data conflict. Since Intel TSX detects data conflicts at the granularity of a cache line, unrelated
data locations placed in the same cache line will be detected as conflicts. Transactional aborts may also occur due
to limited transactional resources. For example, the amount of data accessed in the region may exceed an imple-
mentation-specific capacity. Additionally, some instructions and system events may cause transactional aborts.

16.2.1 HLE Software Interface
HLE provides two new instruction prefix hints: XACQUIRE and XRELEASE.

The programmer uses the XACQUIRE prefix in front of the instruction that is used to acquire the lock that is
protecting the critical section. The processor treats the indication as a hint to elide the write associated with the
lock acquire operation. Even though the lock acquire has an associated write operation to the lock, the processor
does not add the address of the lock to the transactional region’s write-set nor does it issue any write requests to
the lock. Instead, the address of the lock is added to the read-set. The logical processor enters transactional execu-
tion. If the lock was available before the XACQUIRE prefixed instruction, all other processors will continue to see it
as available afterwards. Since the transactionally executing logical processor neither added the address of the lock
to its write-set nor performed externally visible write operations to it, other logical processors can read the lock
without causing a data conflict. This allows other logical processors to also enter and concurrently execute the crit-
ical section protected by the lock. The processor automatically detects any data conflicts that occur during the
transactional execution and will perform a transactional abort if necessary.

Even though the eliding processor did not perform any external write operations to the lock, the hardware ensures
program order of operations on the lock. If the eliding processor itself reads the value of the lock in the critical
section, it will appear as if the processor had acquired the lock, i.e. the read will return the non-elided value. This
behavior makes an HLE execution functionally equivalent to an execution without the HLE prefixes.

The programmer uses the XRELEASE prefix in front of the instruction that is used to release the lock protecting the
critical section. This involves a write to the lock. If the instruction is restoring the value of the lock to the value it
had prior to the XACQUIRE prefixed lock acquire operation on the same lock, then the processor elides the external
write request associated with the release of the lock and does not add the address of the lock to the write-set. The
processor then attempts to commit the transactional execution.

With HLE, if multiple threads execute critical sections protected by the same lock but they do not perform any
conflicting operations on each other’s data, then the threads can execute concurrently and without serialization.
Even though the software uses lock acquisition operations on a common lock, the hardware recognizes this, elides
the lock, and executes the critical sections on the two threads without requiring any communication through the
lock — if such communication was dynamically unnecessary.

If the processor is unable to execute the region transactionally, it will execute the region non-transactionally and
without elision. HLE enabled software has the same forward progress guarantees as the underlying non-HLE lock-
based execution. For successful HLE execution, the lock and the critical section code must follow certain guidelines
(discussed in Section 16.3.3 and Section 16.3.8). These guidelines only affect performance; not following these
guidelines will not cause a functional failure.

16-2 Vol.1

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

Hardware without HLE support will ignore the XACQUIRE and XRELEASE prefix hints and will not perform any
elision since these prefixes correspond to the REPNE/REPE IA-32 prefixes which are ignored on the instructions
where XACQUIRE and XRELEASE are valid. Importantly, HLE is compatible with the existing lock-based program-
ming model. Improper use of hints will not cause functional bugs though it may expose latent bugs already in the
code.

16.2.2 RTM Software Interface
RTM provides three new instructions: XBEGIN, XEND, and XABORT.

Software uses the XBEGIN instruction to specify the start of the transactional region and the XEND instruction to

specify the end of the transactional region. The XBEGIN instruction takes an operand that provides a relative offset
to the fallback instruction address if the transactional region could not be successfully executed transactionally.
Software using these instructions to implement lock elision must test the lock within the transactional region, and
only if free should try to commit. Further, the software may also define a policy to retry if the lock is not free.

A processor may abort transactional execution for many reasons. The hardware automatically detects transactional
abort conditions and restarts execution from the fallback instruction address with the architectural state corre-
sponding to that at the start of the XBEGIN instruction and the EAX register updated to describe the abort status.

The XABORT instruction allows programmers to abort the execution of a transactional region explicitly. The
XABORT instruction takes an 8 bit immediate argument that is loaded into the EAX register and will thus be avail-
able to software following a transactional abort.

Hardware provides no guarantees as to whether a transactional execution will ever successfully commit. Program-
mers must always provide an alternative code sequence in the fallback path to guarantee forward progress. When
using the instructions for lock elision, this may be as simple as acquiring a lock and executing the specified code
region non-transactionally. Further, a transactional region that always aborts on a given implementation may
complete transactionally on a future implementation. Therefore, programmers must ensure the code paths for the
transactional region and the alternative code sequence are functionally tested.

If the RTM software interface is used for anything other than lock elision, the programmer must similarly ensure
that the fallback path is inter-operable with the transactionally executing path.

16.3 INTEL® TSX APPLICATION PROGRAMMING MODEL

16.3.1 Detection of Transactional Synchronization Support

16.3.1.1 Detection of HLE Support

A processor supports HLE execution if CPUID.07H.EBX.HLE [bit 4] = 1. However, an application can use the HLE
prefixes (XACQUIRE and XRELEASE) without checking whether the processor supports HLE. Processors without
HLE support ignore these prefixes and will execute the code without entering transactional execution.

16.3.1.2 Detection of RTM Support

A processor supports RTM execution if CPUID.07H.EBX.RTM [bit 11] = 1. An application must check if the processor
supports RTM before it uses the RTM instructions (XBEGIN, XEND, XABORT). These instructions will generate a
#UD exception when used on a processor that does not support RTM.

16.3.1.3 Detection of XTEST Instruction

A processor supports the XTEST instruction if it supports either HLE or RTM. An application must check either of
these feature flags before using the XTEST instruction. This instruction will generate a #UD exception when used
on a processor that does not support either HLE or RTM.

Vol.1 16-3

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

16.3.2 Querying Transactional Execution Status

The XTEST instruction can be used to determine the transactional status of a transactional region specified by HLE
or RTM. Note, while the HLE prefixes are ignored on processors that do not support HLE, the XTEST instruction will
generate a #UD exception when used on processors that do not support either HLE or RTM.

16.3.3 Requirements for HLE Locks

For HLE execution to successfully commit transactionally, the lock must satisfy certain properties and access to the
lock must follow certain guidelines.

®* An XRELEASE prefixed instruction must restore the value of the elided lock to the value it had before the lock
acquisition. This allows hardware to safely elide locks by not adding them to the write-set. The data size and
data address of the lock release (XRELEASE prefixed) instruction must match that of the lock acquire
(XACQUIRE prefixed) and the lock must not cross a cache line boundary.

®* Software should not write to the elided lock inside a transactional HLE region with any instruction other than an
XRELEASE prefixed instruction, otherwise it may cause a transactional abort. In addition, recursive locks
(where a thread acquires the same lock multiple times without first releasing the lock) may also cause a trans-
actional abort. Note that software can observe the result of the elided lock acquire inside the critical section.
Such a read operation will return the value of the write to the lock.

The processor automatically detects violations to these guidelines, and safely transitions to a non-transactional
execution without elision. Since Intel TSX detects conflicts at the granularity of a cache line, writes to data collo-
cated on the same cache line as the elided lock may be detected as data conflicts by other logical processors eliding
the same lock.

16.3.4 Transactional Nesting

Both HLE- and RTM-based transactional executions support nested transactional regions. However, a transactional
abort restores state to the operation that started transactional execution: either the outermost XACQUIRE prefixed
HLE eligible instruction or the outermost XBEGIN instruction. The processor treats all nested transactional regions
as one monolithic transactional region.

16.3.4.1 HLE Nesting and Elision

Programmers can nest HLE regions up to an implementation specific depth of MAX_HLE_NEST_COUNT. Each logical
processor tracks the nesting count internally but this count is not available to software. An XACQUIRE prefixed HLE-
eligible instruction increments the nesting count, and an XRELEASE prefixed HLE-eligible instruction decrements it.
The logical processor enters transactional execution when the nesting count goes from zero to one. The logical
processor attempts to commit only when the nesting count becomes zero. A transactional abort may occur if the
nesting count exceeds MAX_HLE_NEST_COUNT.

In addition to supporting nested HLE regions, the processor can also elide multiple nested locks. The processor
tracks a lock for elision beginning with the XACQUIRE prefixed HLE eligible instruction for that lock and ending with
the XRELEASE prefixed HLE eligible instruction for that same lock. The processor can, at any one time, track up to
a MAX_HLE_ELIDED_LOCKS number of locks. For example, if the implementation supports a
MAX_HLE_ELIDED_LOCKS value of two and if the programmer nests three HLE identified critical sections (by
performing XACQUIRE prefixed HLE eligible instructions on three distinct locks without performing an intervening
XRELEASE prefixed HLE eligible instruction on any one of the locks), then the first two locks will be elided, but the
third won't be elided (but will be added to the transaction’s write-set). However, the execution will still continue
transactionally. Once an XRELEASE for one of the two elided locks is encountered, a subsequent lock acquired
through the XACQUIRE prefixed HLE eligible instruction will be elided.

The processor attempts to commit the HLE execution when all elided XACQUIRE and XRELEASE pairs have been
matched, the nesting count goes to zero, and the locks have satisfied the requirements described earlier. If execu-
tion cannot commit atomically, then execution transitions to a non-transactional execution without elision as if the
first instruction did not have an XACQUIRE prefix.

16-4 Vol.1

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

16.3.4.2 RTM Nesting

Programmers can nest RTM-based transactional regions up to an implementation specific
MAX_RTM_NEST_COUNT. The logical processor tracks the nesting count internally but this count is not available to
software. An XBEGIN instruction increments the nesting count, and an XEND instruction decrements it. The logical
processor attempts to commit only if the nesting count becomes zero. A transactional abort occurs if the nesting
count exceeds MAX_RTM_NEST_COUNT.

16.3.4.3 Nesting HLE and RTM

HLE and RTM provide two alternative software interfaces to a common transactional execution capability. The
behavior when HLE and RTM are nested together—HLE inside RTM or RTM inside HLE—is implementation specific.
However, in all cases, the implementation will maintain HLE and RTM semantics. An implementation may choose to
ignore HLE hints when used inside RTM regions, and may cause a transactional abort when RTM instructions are
used inside HLE regions. In the latter case, the transition from transactional to non-transactional execution occurs
seamlessly since the processor will re-execute the HLE region without actually doing elision, and then execute the
RTM instructions.

16.3.5 RTM Abort Status Definition

RTM uses the EAX register to communicate abort status to software. Following an RTM abort the EAX register has
the following definition.

Table 16-1. RTM Abort Status Definition

EAX Register Bit Meaning
Position
0 Set if abort caused by XABORT instruction.
1 If set, the transactional execution may succeed on a retry. This bit is always clear if bit O is set.
2 Set if another logical processor conflicted with a memory address that was part of the transactional execution
that aborted.

3 Set if an internal buffer to track transactional state overflowed.
4 Set if a debug exception (#DB) or breakpoint exception (#BP) was hit.
5 Set if an abort occurred during execution of a nested transactional execution.

236 Reserved.

31:24 XABORT argument (only valid if bit O set, otherwise reserved).

The EAX abort status for RTM only provides causes for aborts. It does not by itself encode whether an abort or
commit occurred for the RTM region. The value of EAX can be 0 following an RTM abort. For example, a CPUID
instruction when used inside an RTM region causes a transactional abort and may not satisfy the requirements for
setting any of the EAX bits. This may result in an EAX value of 0.

16.3.6 RTM Memory Ordering

A successful RTM commit causes all memory operations in the RTM region to appear to execute atomically. A
successfully committed RTM region consisting of an XBEGIN followed by an XEND, even with no memory operations
in the RTM region, has the same ordering semantics as a LOCK prefixed instruction.

The XBEGIN instruction does not have fencing semantics. However, if an RTM execution aborts, all memory
updates from within the RTM region are discarded and never made visible to any other logical processor.

Vol.1T 16-5

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

16.3.7 RTM-Enabled Debugger Support

Any debug exception (#DB) or breakpoint exception (#BP) inside an RTM region causes a transactional abort and,
by default, redirects control flow to the fallback instruction address with architectural state recovered and bit 4 in
EAX set. However, to allow software debuggers to intercept execution on debug or breakpoint exceptions, the RTM
architecture provides additional capability called advanced debugging of RTM transactional regions.

Advanced debugging of RTM transactional regions is enabled if bit 11 of DR7 and bit 15 of the IA32_DEBUGCTL MSR
are both 1. In this case, any RTM transactional abort due to a #DB or #BP causes execution to roll back to just
before the XBEGIN instruction (EAX is restored to the value it had before XBEGIN) and then delivers a #DB. (A #DB
is delivered even if the transactional abort was caused by a #BP.) DR6[16] is cleared to indicate that the exception
resulted from a debug or breakpoint exception inside an RTM region. See also Section 17.3.3, “"Debug Exceptions,
Breakpoint Exceptions, and Restricted Transactional Memory (RTM),” of Intel® 64 and 1A-32 Architectures Soft-
ware Developer’s Manual, Volume 3B.

16.3.8 Programming Considerations

Typical programmer-identified regions are expected to execute transactionally and to commit successfully.
However, Intel TSX does not provide any such guarantee. A transactional execution may abort for many reasons.
To take full advantage of the transactional capabilities, programmers should follow certain guidelines to increase
the probability of their transactional execution committing successfully.

This section discusses various events that may cause transactional aborts. The architecture ensures that updates
performed within a transactional region that subsequently aborts execution will never become visible. Only a
committed transactional execution updates architectural state. Transactional aborts never cause functional failures
and only affect performance.

16.3.8.1 Instruction Based Considerations

Programmers can use any instruction safely inside a transactional region. Further, programmers can use the Intel
TSX instructions and prefixes at any privilege level. However, some instructions will always abort the transactional
execution and cause execution to seamlessly and safely transition to a non-transactional path.

Intel TSX allows for most common instructions to be used inside transactional regions without causing aborts. The
following operations inside a transactional region do not typically cause an abort.

® Operations on the instruction pointer register, general purpose registers (GPRs) and the status flags (CF, OF, SF,
PF, AF, and ZF).

® Operations on XMM and YMM registers and the MXCSR register

However, programmers must be careful when intermixing SSE and AVX operations inside a transactional region.
Intermixing SSE instructions accessing XMM registers and AVX instructions accessing YMM registers may cause
transactional regions to abort.

CLD and STD instructions when used inside transactional regions may cause aborts if they change the value of the
DF flag. However, if DF is 1, the STD instruction will not cause an abort. Similarly, if DF is 0, the CLD instruction will
not cause an abort.

Instructions not enumerated here as causing abort when used inside a transactional region will typically not cause
the execution to abort (examples include but are not limited to MFENCE, LFENCE, SFENCE, RDTSC, RDTSCP, etc.).

The following instructions will abort transactional execution on any implementation:

¢ XABORT
¢* CPUID
®* PAUSE
®* ENCLS
* ENCLU

In addition, in some implementations, the following instructions may always cause transactional aborts. These
instructions are not expected to be commonly used inside typical transactional regions. However, programmers
must not rely on these instructions to force a transactional abort, since whether they cause transactional aborts is
implementation dependent.

16-6 Vol.1

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

® Operations on X87 and MMX architecture state. This includes all MMX and X87 instructions, including the
FXRSTOR and FXSAVE instructions.

®* Update to non-status portion of EFLAGS: CLI, STI, POPFD, POPFQ, CLAC and STAC.

* Instructions that update segment registers, debug registers and/or control registers: MOV to
DS/ES/FS/GS/SS, POP DS/ES/FS/GS/SS, LDS, LES, LFS, LGS, LSS, SWAPGS, WRFSBASE, WRGSBASE, LGDT,
SGDT, LIDT, SIDT, LLDT, SLDT, LTR, STR, Far CALL, Far JMP, Far RET, IRET, MOV to DRx, MOV to
CRO/CR2/CR3/CR4/CR8, CLTS, and LMSW.

® Ring transitions: SYSENTER, SYSCALL, SYSEXIT, and SYSRET.

® TLB and Cacheability control: CLFLUSH, CLFLUSHOPT, CLWB, INVD, WBINVD, INVLPG, INVPCID, and memory
instructions with a non-temporal hint (V/MOVNTDQA, V/MOVNTDQ, V/MOVNTI, V/MOVNTPD, V/MOVNTPS,
V/MOVNTQ, V/MASKMOVQ, and V/MASKMOVDQU).

®* Extended state management: XRSTOR, XRSTORS, XSAVE, XSAVEC, XSAVEOPT, XSAVES, and XSETBV.
¢ Interrupts: INT n, INTO, INT3, INT1.
®* I/0: IN, INS, REP INS, OUT, OUTS, REP OUTS and their variants.

¢ VMX: VMPTRLD, VMPTRST, VMCLEAR, VMREAD, VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF,
VMXON, INVEPT, INVVPID, and VMFUNC.

®* SMX: GETSEC.
* UDO, UD1, UD2, RSM, RDMSR, WRMSR, WRPKRU, HLT, MONITOR, MWAIT, and VZEROUPPER.

16.3.8.2 Runtime Considerations

In addition to the instruction-based considerations, runtime events may cause transactional execution to abort.
These may be due to data access patterns or micro-architectural implementation causes. Keep in mind that the
following list is not a comprehensive discussion of all abort causes.

Any fault or trap in a transactional region that must be exposed to software will be suppressed. Transactional
execution will abort and execution will transition to a non-transactional execution, as if the fault or trap had never
occurred. If any exception is not masked, that will result in a transactional abort and it will be as if the exception
had never occurred.

When executed in VMX non-root operation, certain instructions may result in a VM exit. When such instructions are
executed inside a transactional region, then instead of causing a VM exit, they will cause a transactional abort and
the execution will appear as if instruction that would have caused a VM exit never executed.

Synchronous exception events (#DE, #0OF, #NP, #SS, #GP, #BR, #UD, #AC, #XM, #PF, #NM, #TS, #MF, #DB,
#BP/INT3) that occur during transactional execution may cause an execution not to commit transactionally, and
require a non-transactional execution. These events are suppressed as if they had never occurred. With HLE, since
the non-transactional code path is identical to the transactional code path, these events will typically re-appear
when the instruction that caused the exception is re-executed non-transactionally, causing the associated synchro-
nous events to be delivered appropriately in the non-transactional execution. The same behavior also applies to
synchronous events (EPT violations, EPT misconfigurations, and accesses to the APIC-access page) that occur in
VMX non-root operation.

Asynchronous events (NMI, SMI, INTR, IPI, PMI, etc.) occurring during transactional execution may cause the
transactional execution to abort and transition to a non-transactional execution. The asynchronous events will be
pended and handled after the transactional abort is processed. The same behavior also applies to asynchronous
events (VMX-preemption timer expiry, virtual-interrupt delivery, and interrupt-window exiting) that occur in VMX
non-root operation.

Transactional execution only supports write-back cacheable memory type operations. A transactional region may
always abort if it includes operations on any other memory type. This includes instruction fetches to UC memory
type.

Memory accesses within a transactional region may require the processor to set the Accessed and Dirty flags of the
referenced page table entry. The behavior of how the processor handles this is implementation specific. Some
implementations may allow the updates to these flags to become externally visible even if the transactional region
subsequently aborts. Some Intel TSX implementations may choose to abort the transactional execution if these
flags need to be updated. Further, a processor's page-table walk may generate accesses to its own transactionally
written but uncommitted state. Some Intel TSX implementations may choose to abort the execution of a transac-

Vol.1 16-7

PROGRAMMING WITH INTEL® TRANSACTIONAL SYNCHRONIZATION EXTENSIONS

tional region in such situations. Regardless, the architecture ensures that, if the transactional region aborts, then
the transactionally written state will not be made architecturally visible through the behavior of structures such as
TLBs.

Executing self-modifying code transactionally may also cause transactional aborts. Programmers must continue to
follow the Intel recommended guidelines for writing self-modifying and cross-modifying code even when employing
Intel TSX.

While an Intel TSX implementation will typically provide sufficient resources for executing common transactional
regions, implementation constraints and excessive sizes for transactional regions may cause a transactional execu-
tion to abort and transition to a non-transactional execution. The architecture provides no guarantee of the amount
of resources available to do transactional execution and does not guarantee that a transactional execution will ever
succeed.

Conflicting requests to a cache line accessed within a transactional region may prevent the transactional region
from executing successfully. For example, if logical processor PO reads line A in a transactional region and another
logical processor P1 writes A (either inside or outside a transactional region) then logical processor PO may abort if
logical processor P1's write interferes with processor PQ's ability to execute transactionally. Similarly, if PO writes
line A in a transactional region and Plreads or writes A (either inside or outside a transactional region), then PO
may abort if P1's access to A interferes with PQ's ability to execute transactionally. In addition, other coherence
traffic may at times appear as conflicting requests and may cause aborts. While these false conflicts may happen,
they are expected to be uncommon. The conflict resolution policy to determine whether PO or P1 aborts in the
above scenarios is implementation specific.

16-8 Vol.1

4. Updates to Chapter 3, Volume 2A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2A: Instruction Set Reference, A-L.

Change to this chapter: Update to Table 3-4 “Intel 64 and IA-32 General Exceptions”. Updates to INT n/INTO/
INT3/INT1 instruction.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 11

INSTRUCTION SET REFERENCE, A-L

sign (#) followed by two letters and an optional error code in parentheses. For example, #GP(0) denotes a general
protection exception with an error code of 0. Table 3-4 associates each two-letter mnemonic with the corre-

sponding exception vector and name. See Chapter 6, “Procedure Calls, Interrupts, and Exceptions,” in the Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A, for a detailed description of the exceptions.

Application programmers should consult the documentation provided with their operating systems to determine
the actions taken when exceptions occur.

Table 3-4. Intel 64 and IA-32 General Exceptions

Vector Name Source Protected | Real Virtual
Mode? Address | 8086
Mode Mode
0 #DE—Divide Error DIV and IDIV instructions. Yes Yes Yes
1 #DB—Debug Any code or data reference. Yes Yes Yes
3 #BP—Breakpoint INT3 instruction. Yes Yes Yes
4 #OF—Overflow INTO instruction. Yes Yes Yes
5 #BR—BOUND Range Exceeded BOUND instruction. Yes Yes Yes
6 #UD—Invalid Opcode (Undefined UD instruction or reserved opcode. Yes Yes Yes
Opcode)
7 #NM—Device Not Available (No Floating-point or WAIT/FWAIT instruction. Yes Yes Yes
Math Coprocessor)
8 #DF—Double Fault Any instruction that can generate an Yes Yes Yes
exception, an NMI, or an INTR.
10 #TS—Invalid TSS Task switch or TSS access. Yes Reserved Yes
11 #NP—Segment Not Present Loading segment registers or accessing system Yes Reserved Yes
segments.
12 #SS—Stack Segment Fault Stack operations and SS register loads. Yes Yes Yes
13 #GP—General Protection? Any memory reference and other protection Yes Yes Yes
checks.
14 #PF—Page Fault Any memory reference. Yes Reserved Yes
16 #MF—Floating-Point Error (Math Floating-point or WAIT/FWAIT instruction. Yes Yes Yes
Fault)
17 #AC—Alignment Check Any data reference in memory. Yes Reserved Yes
18 #MC—Machine Check Model dependent machine check errors. Yes Yes Yes
19 #XM—SIMD Floating-Point SSE/SSE2/SSE3 floating-point instructions. Yes Yes Yes
Numeric Error
NOTES:

1. Apply to protected mode, compatibility mode, and 64-bit mode.
2. In the real-address mode, vector 13 is the segment overrun exception.

3.1.1.14 Real-Address Mode Exceptions Section

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
real-address mode (see Table 3-4).

3.1.1.15 Virtual-8086 Mode Exceptions Section

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the instruction is executed in
virtual-8086 mode (see Table 3-4).

3-16 Vol.2A

INSTRUCTION SET REFERENCE, A-L

INT n/INTO/INT3/INT1—Call to Interrupt Procedure

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
cC INT3 Z0 |Valid Valid Generate breakpoint trap.
(D ib INT imm8 | Valid Valid Generate software interrupt with vector
specified by immediate byte.
CE INTO Z0 |Invalid Valid Generate overflow trap if overflow flag is 1.
F1 INT1 Z0 |Valid Valid Generate debug trap.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z20 NA NA NA NA
I imm8 NA NA NA
Description

The INT n instruction generates a call to the interrupt or exception handler specified with the destination operand
(see the section titled “Interrupts and Exceptions” in Chapter 6 of the Intel® 64 and I1A-32 Architectures Software
Developer’s Manual, Volume 1). The destination operand specifies a vector from 0O to 255, encoded as an 8-bit
unsigned intermediate value. Each vector provides an index to a gate descriptor in the IDT. The first 32 vectors are
reserved by Intel for system use. Some of these vectors are used for internally generated exceptions.

The INT n instruction is the general mnemonic for executing a software-generated call to an interrupt handler. The
INTO instruction is a special mnemonic for calling overflow exception (#0F), exception 4. The overflow interrupt
checks the OF flag in the EFLAGS register and calls the overflow interrupt handler if the OF flag is set to 1. (The
INTO instruction cannot be used in 64-bit mode.)

The INT3 instruction uses a one-byte opcode (CC) and is intended for calling the debug exception handler with a
breakpoint exception (#BP). (This one-byte form is useful because it can replace the first byte of any instruction at
which a breakpoint is desired, including other one-byte instructions, without overwriting other instructions.)

The INT1 instruction also uses a one-byte opcode (F1) and generates a debug exception (#DB) without setting any
bits in DR6.1 Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recom-
mends software vendors instead use the INT3 instruction for software breakpoints.

An interrupt generated by the INTO, INT3, or INT1 instruction differs from one generated by INT n in the following
ways:

® The normal IOPL checks do not occur in virtual-8086 mode. The interrupt is taken (without fault) with any 10PL
value.

® The interrupt redirection enabled by the virtual-8086 mode extensions (VME) does not occur. The interrupt is
always handled by a protected-mode handler.

(These features do not pertain to CD03, the “normal” 2-byte opcode for INT 3. Intel and Microsoft assemblers will
not generate the CDO3 opcode from any mnemonic, but this opcode can be created by direct numeric code defini-
tion or by self-modifying code.)

The action of the INT n instruction (including the INTO, INT3, and INT1 instructions) is similar to that of a far call
made with the CALL instruction. The primary difference is that with the INT n instruction, the EFLAGS register is
pushed onto the stack before the return address. (The return address is a far address consisting of the current
values of the CS and EIP registers.) Returns from interrupt procedures are handled with the IRET instruction, which
pops the EFLAGS information and return address from the stack.

Each of the INT n, INTO, and INT3 instructions generates a general-protection exception (#GP) if the CPL is greater
than the DPL value in the selected gate descriptor in the IDT. In contrast, the INT1 instruction can deliver a #DB

1. The mnemonic ICEBP has also been used for the instruction with opcode F1.

3-460 Vol.2A INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

even if the CPL is greater than the DPL of descriptor 1 in the IDT. (This behavior supports the use of INT1 by hard-
ware vendors performing hardware debug.)

The vector specifies an interrupt descriptor in the interrupt descriptor table (IDT); that is, it provides index into the
IDT. The selected interrupt descriptor in turn contains a pointer to an interrupt or exception handler procedure.
In protected mode, the IDT contains an array of 8-byte descriptors, each of which is an interrupt gate, trap gate,
or task gate. In real-address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and
a 2-byte instruction pointer), each of which point directly to a procedure in the selected segment. (Note that in
real-address mode, the IDT is called the interrupt vector table, and its pointers are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken given the conditions in
the upper portion of the table. Each Y in the lower section of the decision table represents a procedure defined in
the “Operation” section for this instruction (except #GP).

Table 3-51. Decision Table
PE 0 1 1 1 1 1 1 1

VM - - - - - 0 1 1

I0PL - - - - - - <3 =3

DPL/CPL - DPL< - DPL> DPL= DPL< - -

RELATIONSHIP CPL CPL CPLorC CPL&NC

INTERRUPT TYPE - S/w - - - - - -

GATE TYPE - - Task Trap or Trap or Trap or Trap or Trap or
Interrupt Interrupt Interrupt Interrupt Interrupt

REAL-ADDRESS-MODE Y
PROTECTED-MODE Y Y Y Y Y Y

TRAP-OR-INTERRUPT-
GATE

INTER-PRIVILEGE-LEVEL- Y
INTERRUPT

INTRA-PRIVILEGE-LEVEL- Y
INTERRUPT

INTERRUPT-FROM- Y
VIRTUAL-8086-MODE

TASK-GATE Y
#GP Y Y Y
NOTES:

— Don't Care.

Y Yes, action taken.

Blank Action not taken.
S/W Applies to INT n, INT3, and INTO, but not to INT1.

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the INT n instruction. If
the IOPL is less than 3, the processor generates a #GP(selector) exception; if the IOPL is 3, the processor executes
a protected mode interrupt to privilege level 0. The interrupt gate's DPL must be set to 3 and the target CPL of the
interrupt handler procedure must be O to execute the protected mode interrupt to privilege level O.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the IDT. The initial base
address value of the IDTR after the processor is powered up or reset is O.

Operation

The following operational description applies not only to the INT n, INTO, INT3, or INT1 instructions, but also to
external interrupts, nonmaskable interrupts (NMIs), and exceptions. Some of these events push onto the stack an
error code.

INT n/INTO/INT3/INT1—Call to Interrupt Procedure Vol.2A 3-461

INSTRUCTION SET REFERENCE, A-L

The operational description specifies numerous checks whose failure may result in delivery of a nested exception.
In these cases, the original event is not delivered.

The operational description specifies the error code delivered by any nested exception. In some cases, the error
code is specified with a pseudofunction error_code(num,idt,ext), where idt and ext are bit values. The pseudofunc-
tion produces an error code as follows: (1) if idt is O, the error code is (num & FCH) | ext; (2) if idtis 1, the error
code is (num « 3) | 2 | ext.

In many cases, the pseudofunction error_code is invoked with a pseudovariable EXT. The value of EXT depends on
the nature of the event whose delivery encountered a nested exception: if that event is a software interrupt (INT n,
INT3, or INTO), EXT is O; otherwise (including INT1), EXT is 1.

IFPE=0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE (*PE=17%)
IF (EFLAGS.VM = 1 AND CR4.VME = 0 AND IOPL < 3 AND INT)

THEN
#GP(0); (* Bit O of error code is O because INT n *)
ELSE
IF (EFLAGS.VM =1 AND CR4.VME = 1 AND INT n)
THEN
Consult bit n of the software interrupt redirection bit map in the TSS;
IF bit nis clear
THEN (* redirect interrupt to 8086 program interrupt handler *)
Push EFLAGS[15:0]; (*if IOPL < 3, save VIF in IF position and save IOPL position as 3 *)
Push CS;
Push IP;
IFIOPL=3
THEN IF « O; (* Clear interrupt flag *)
ELSE VIF « O; (* Clear virtual interrupt flag *)
Fl;
TF « O; (* Clear trap flag *)
load CS and EIP (lower 16 bits only) from entry nin interrupt vector table referenced from TSS;
ELSE
IFIOPL=3
THEN GOTO PROTECTED-MODE;
ELSE #GP(0); (* Bit O of error code is 0 because INT n *)
Fl;
Fl;
ELSE (* Protected mode, IA-32e mode, or virtual-8086 mode interrupt *)
IF (IA32_EFER.LMA = 0)
THEN (* Protected mode, or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
ELSE (* IA-32e mode interrupt *)
GOTO IA-32e-MODE;
Fl;
Fl;

Fl;
Fl;
REAL-ADDRESS-MODE:
IF ((vector_number « 2) + 3) is not within IDT limit
THEN #GP; FI;
IF stack not large enough for a 6-byte return information
THEN #SS; Fl;
Push (EFLAGS[15:01);

3-462 Vol.2A INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

IF < O; (* Clear interrupt flag *)
TF « O; (* Clear trap flag *)
AC « O; (* Clear AC flag *)
Push(CS);
Push(IP);
(* No error codes are pushed in real-address mode*)
CS « IDT(Descriptor (vector_number « 2), selector));
EIP « IDT(Descriptor (vector_number « 2), offset)); (* 16 bit offset AND O000FFFFH *)
END;
PROTECTED-MODE:
IF ((vector_number « 3) + 7) is not within IDT limits
or selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP(error_code(vector_number,1,EXT)); Fl;
(* idt operand to error_code set because vector is used *)
IF software interrupt (* Generated by INT n, INT3, or INTO; does not apply to INT1 *)
THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0)); Fl;
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is O because INT n, INT3, or INTO*)
Fl;
IF gate not present
THEN #NP(error_code(vector_number,1,EXT)); Fl;
(* idt operand to error_code set because vector is used *)
IF task gate (* Specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE = 1, trap/interrupt gate *)
Fl;
END;
IA-32e-MODE:
IFINTO and CS.L = 1 (64-bit mode)
THEN #UD;
Fl;
IF ((vector_number « 4) + 15) is not in IDT limits
or selected IDT descriptor is not an interrupt-, or trap-gate type
THEN #GP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)

Fl;
IF software interrupt (* Generated by INT n, INT3, or INTO; does not apply to INT1 *)
THEN
IF gate DPL < CPL (* PE = 1, DPL < CPL, software interrupt *)
THEN #GP(error_code(vector_number,1,0));
(* idt operand to error_code set because vector is used *)
(* ext operand to error_code is O because INT n, INT3, or INTO*)
Fl;
Fl;

IF gate not present
THEN #NP(error_code(vector_number,1,EXT));
(* idt operand to error_code set because vector is used *)
Fl;
GOTO TRAP-OR-INTERRUPT-GATE; (* Trap/interrupt gate *)
END;
TASK-GATE: (* PE = 1, task gate *)
Read TSS selector in task gate (IDT descriptor);

INT n/INTO/INT3/INT1—Call to Interrupt Procedure Vol.2A 3-463

INSTRUCTION SET REFERENCE, A-L

IF local/global bit is set to local or index not within GDT limits
THEN #GP(error_code(TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(error_code(TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF TSS not present
THEN #NP(error_code(TSS selector,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of error code
THEN #SS(EXT); FI;
Push(error code);
FI;
IF EIP not within code segment limit
THEN #GP(EXT); FI;
END;
TRAP-OR-INTERRUPT-GATE:
Read new code-segment selector for trap or interrupt gate (IDT descriptor);
IF new code-segment selector is NULL
THEN #GP(EXT); Fl; (* Error code contains NULL selector *)
IF new code-segment selector is not within its descriptor table limits
THEN #GP(error_code(new code-segment selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Read descriptor referenced by new code-segment selector;
IF descriptor does not indicate a code segment or new code-segment DPL > CPL
THEN #GP(error_code(new code-segment selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF new code-segment descriptor is not present,
THEN #NP(error_code(new code-segment selector,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
IF new code segment is non-conforming with DPL < CPL

THEN
IFVM=0
THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(*PE=1,VM =0, interrupt or trap gate, nonconforming code segment,
DPL < CPL *)
ELSE(*VM=1%)
IF new code-segment DPL # O
THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE; FI;
(* PE =1, interrupt or trap gate, DPL < CPL, VM =1 *)
Fl;
ELSE (* PE = 1, interrupt or trap gate, DPL > CPL *)
IFVM=1

THEN #GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)

IF new code segment is conforming or new code-segment DPL = CPL
THEN

3-464 Vol. 2A INT n/INTO/INT3/INT1—Call to Interrupt Procedure

GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE (* PE = 1, interrupt or trap gate, nonconforming code segment, DPL > CPL *)
#GP(error_code(new code-segment selector,0,EXT));
(* idt operand to error_code is O because selector is used *)
Fl;
Fl;
END;
INTER-PRIVILEGE-LEVEL-INTERRUPT:
(* PE =1, interrupt or trap gate, non-conforming code segment, DPL < CPL *)
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
(* Identify stack-segment selector for new privilege level in current TSS *)
IF current TSS is 32-bit
THEN
TSSstackAddress « (new code-segment DPL « 3) + 4;
IF (TSSstackAddress + 5) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (TSS base + TSSstackAddress + 4);
NewESP « 4 bytes loaded from (TSS base + TSSstackAddress);
ELSE (* current TSS is 16-bit *)
TSSstackAddress « (new code-segment DPL « 2) + 2
IF (TSSstackAddress + 3) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (TSS base + TSSstackAddress + 2);
NewESP « 2 bytes loaded from (TSS base + TSSstackAddress);
Fl;
IF NewsSS is NULL
THEN #TS(EXT); FI;
IF NewsSS index is not within its descriptor-table limits
or NewSS RPL # new code-segment DPL
THEN #TS(error_code(NewsSS,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL # new code-segment DPL
or new stack-segment Type does not indicate writable data segment
THEN #TS(error_code(NewsSS,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
IF NewsSsS is not present
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
ELSE (* IA-32e mode *)
IFIDT-gate IST =0
THEN TSSstackAddress « (new code-segment DPL « 3) + 4;
ELSE TSSstackAddress « (IDT gate IST « 3) + 28;
Fl;
IF (TSSstackAddress + 7) > current TSS limit
THEN #TS(error_code(current TSS selector,0,EXT); Fl;
(* idt operand to error_code is O because selector is used *)
NewRSP « 8 bytes loaded from (current TSS base + TSSstackAddress);
NewsSS « new code-segment DPL; (* NULL selector with RPL = new CPL *)
Fl;
IF IDT gate is 32-bit

INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-465

INSTRUCTION SET REFERENCE, A-L

THEN
IF new stack does not have room for 24 bytes (error code pushed)
or 20 bytes (no error code pushed)
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Fl
ELSE
IF IDT gate is 16-bit
THEN
IF new stack does not have room for 12 bytes (error code pushed)
or 10 bytes (no error code pushed);
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
ELSE (* 64-bit IDT gate*)
IF StackAddress is non-canonical
THEN #SS(EXT); Fl; (* Error code contains NULL selector *)
Fl;
Fl;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
IF instruction pointer from IDT gate is not within new code-segment limits
THEN #GP(EXT); Fl; (* Error code contains NULL selector *)
ESP < NewESP;
SS « NewsSS; (* Segment descriptor information also loaded *)
ELSE (* IA-32e mode *)
IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP « NewRSP & FFFFFFFFFFFFFFFOH;
SS « NewsSsS;
Fl;
IF IDT gate is 32-bit
THEN
CS:EIP « Gate(CS:EIP); (* Segment descriptor information also loaded *)
ELSE
IF IDT gate 16-bit
THEN
CS:IP « Gate(CS:IP);
(* Segment descriptor information also loaded *)
ELSE (* 64-bit IDT gate *)
CS:RIP « Gate(CS:RIP);
(* Segment descriptor information also loaded *)
Fl;
Fl;
IF IDT gate is 32-bit
THEN
Push(far pointer to old stack);
(* OId SS and ESP, 3 words padded to 4 *)
Push(EFLAGS);
Push(far pointer to return instruction);
(* OId CS and EIP, 3 words padded to 4 *)
Push(ErrorCode); (* If needed, 4 bytes *)
ELSE
IF IDT gate 16-bit
THEN

3-466 Vol. 2A INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Push(far pointer to old stack);
(* OId SS and SP, 2 words *)
Push(EFLAGS(15:0]);
Push(far pointer to return instruction);
(*0Id CS and IP, 2 words *)
Push(ErrorCode); (* If needed, 2 bytes *)
ELSE (* 64-bit IDT gate *)
Push(far pointer to old stack);
(* OId SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* OId CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8-bytes *)
Fl;
Fl;
CPL « new code-segment DPL;
CS(RPL) « CPL;
IF IDT gate is interrupt gate
THEN IF « O (* Interrupt flag set to O, interrupts disabled *); FI;
TF«0;
VM« 0;
RF « O;
NT « O;
END;
INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Identify stack-segment selector for privilege level O in current TSS *)
IF current TSS is 32-bit
THEN
IF TSS limit <9
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (current TSS base + 8);
NewESP « 4 bytes loaded from (current TSS base + 4);
ELSE (* current TSS is 16-bit *)
IF TSS limit < 5
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewsSS « 2 bytes loaded from (current TSS base + 4);
NewESP « 2 bytes loaded from (current TSS base + 2);
Fl;
IF NewsSS is NULL
THEN #TS(EXT); FI; (* Error code contains NULL selector *)
IF NewsSS index is not within its descriptor table limits
or NewSS RPL #0
THEN #TS(error_code(NewsSS,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
Read new stack-segment descriptor for NewSS in GDT or LDT;
IF new stack-segment DPL # O or stack segment does not indicate writable data segment
THEN #TS(error_code(NewsSS,0,EXT)); FI;
(* idt operand to error_code is O because selector is used *)
IF new stack segment not present
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
IF IDT gate is 32-bit

INT n/INTO/INT3/INT1—Call to Interrupt Procedure Vol.2A 3-467

INSTRUCTION SET REFERENCE, A-L

THEN
IF new stack does not have room for 40 bytes (error code pushed)
or 36 bytes (no error code pushed)
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
ELSE (* IDT gate is 16-bit)
IF new stack does not have room for 20 bytes (error code pushed)
or 18 bytes (no error code pushed)
THEN #SS(error_code(NewsSS,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
Fl;
IF instruction pointer from IDT gate is not within new code-segment limits
THEN #GP(EXT); Fl; (* Error code contains NULL selector *)
tempEFLAGS « EFLAGS;
VM « 0;
TF«0;
RF « O;
NT « O;
IF service through interrupt gate
THENIF = O; FI;
TempSS « SS;
TempESP « ESP;
SS « NewsSsS;
ESP < NewESP;
(* Following pushes are 16 bits for 16-bit IDT gates and 32 bits for 32-bit IDT gates;
Segment selector pushes in 32-bit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS « O; (* Segment registers made NULL, invalid for use in protected mode *)
FS«0;
DS «0;
ES «O;
CS « Gate(CS); (* Segment descriptor information also loaded *)
CS(RPL) « O;
CPL« O;
IF IDT gate is 32-bit
THEN
EIP « Gate(instruction pointer);
ELSE (* IDT gate is 16-bit *)
EIP « Gate(instruction pointer) AND O000FFFFH;
Fl;
(* Start execution of new routine in Protected Mode *)
END;
INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IFIA32_EFER.LMA =1 (* IA-32e mode *)
IF IDT-descriptor IST #0

3-468 Vol. 2A INT n/INTO/INT3/INT1—Call to Interrupt Procedure

THEN
TSSstackAddress « (IDT-descriptor IST « 3) + 28;
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(error_code(current TSS selector,0,EXT)); Fl;
(* idt operand to error_code is O because selector is used *)
NewRSP « 8 bytes loaded from (current TSS base + TSSstackAddress);
ELSE NewRSP « RSP;
Fl;
Fl;
IF 32-bit gate (* implies IA32_EFERLMA =0 *)
THEN
IF current stack does not have room for 16 bytes (error code pushed)
or 12 bytes (no error code pushed)
THEN #SS(EXT); Fl; (* Error code contains NULL selector *)
ELSE IF 16-bit gate (* implies IA32_EFER.LMA =0 *)
IF current stack does not have room for 8 bytes (error code pushed)
or 6 bytes (no error code pushed)
THEN #SS(EXT); Fl; (* Error code contains NULL selector *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
IF NewRSP contains a non-canonical address
THEN #SS(EXT); (* Error code contains NULL selector *)
Fl;
Fl;
IF (IA32_EFER.LMA = 0) (* Not IA-32e mode *)
THEN
IF instruction pointer from IDT gate is not within new code-segment limit
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
ELSE
IF instruction pointer from IDT gate contains a non-canonical address
THEN #GP(EXT); FI; (* Error code contains NULL selector *)
RSP « NewRSP & FFFFFFFFFFFFFFFOH;
Fl;
IF IDT gate is 32-bit (* implies IA32_EFER.LMA = 0 *)
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS:EIP « Gate(CS:EIP); (* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)
ELSE
IF IDT gate is 16-bit (* implies IA32_EFER.LMA = 0 *)
THEN
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP « Gate(CS:IP);
(* Segment descriptor information also loaded *)
Push (ErrorCode); (* If any *)
ELSE (* IA32_EFER.LMA = 1, 64-bit gate*)
Push(far pointer to old stack);
(* OId SS and SP, each an 8-byte push *)
Push(RFLAGS); (* 8-byte push *)
Push(far pointer to return instruction);
(* OId CS and RIP, each an 8-byte push *)
Push(ErrorCode); (* If needed, 8 bytes *)
CSRIP «— GATE(CS:RIP);

INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Vol. 2A 3-469

INSTRUCTION SET REFERENCE, A-L

Fl;
Fl;
CS(RPL) « CPL;

(* Segment descriptor information also loaded *)

IF IDT gate is interrupt gate
THEN IF « O; FI; (* Interrupt flag set to O; interrupts disabled *)

TF«0;

NT « O;

VM « 0;

RF « O;
END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be cleared, depending on
the mode of operation of the processor when the INT instruction is executed (see the “Operation” section). If the
interrupt uses a task gate, any flags may be set or cleared, controlled by the EFLAGS image in the new task’s TSS.

Protected Mode Exceptions

#GP(error_code)

#SS(error_code)

#NP(error_code)
#TS(error_code)

#PF(fault-code)
#UD
#AC(EXT)

3-470 Vol.2A

If the instruction pointer in the IDT or in the interrupt, trap, or task gate is beyond the code
segment limits.

If the segment selector in the interrupt, trap, or task gate is NULL.

If an interrupt, trap, or task gate, code segment, or TSS segment selector index is outside its
descriptor table limits.

If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt, trap, or task gate.

If an interrupt is generated by the INT n, INT3, or INTO instruction and the DPL of an interrupt,
trap, or task gate is less than the CPL.

If the segment selector in an interrupt or trap gate does not point to a segment descriptor for
a code segment.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment and no stack switch occurs.

If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, or stack segment pointer exceeds the bounds
of the new stack segment when a stack switch occurs.

If code segment, interrupt gate, trap gate, task gate, or TSS is not present.

If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment
being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment selector in the TSS is
not equal to the DPL of the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.

If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table limits.

If a page fault occurs.

If the LOCK prefix is used.

If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

INT n/INTO/INT3/INT1—Call to Interrupt Procedure

INSTRUCTION SET REFERENCE, A-L

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the interrupt vector number is outside the IDT limits.

#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds the bounds of the
stack segment.

#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(error_code) (For INT n, INTO, or BOUND instruction) If the IOPL is less than 3 or the DPL of the interrupt,
trap, or task gate is not equal to 3.

If the instruction pointer in the IDT or in the interrupt, trap, or task gate is beyond the code
segment limits.

If the segment selector in the interrupt, trap, or task gate is NULL.

If a interrupt gate, trap gate, task gate, code segment, or TSS segment selector index is
outside its descriptor table limits.

If the vector selects a descriptor outside the IDT limits.
If an IDT descriptor is not an interrupt, trap, or task gate.

If an interrupt is generated by INT n, INT3, or INTO and the DPL of an interrupt, trap, or task
gate is less than the CPL.

If the segment selector in an interrupt or trap gate does not point to a segment descriptor for
a code segment.

If the segment selector for a TSS has its local/global bit set for local.
#SS(error_code) If the SS register is being loaded and the segment pointed to is marked not present.

If pushing the return address, flags, error code, stack segment pointer, or data segments
exceeds the bounds of the stack segment.

#NP(error_code) If code segment, interrupt gate, trap gate, task gate, or TSS is not present.

#TS(error_code) If the RPL of the stack segment selector in the TSS is not equal to the DPL of the code segment
being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not equal to the DPL of
the code segment descriptor for the interrupt or trap gate.

If the stack segment selector in the TSS is NULL.
If the stack segment for the TSS is not a writable data segment.
If segment-selector index for stack segment is outside descriptor table limits.

#PF(fault-code) If a page fault occurs.

#OF If the INTO instruction is executed and the OF flag is set.

#UD If the LOCK prefix is used.

#AC(EXT) If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

INT n/INTO/INT3/INT1—Call to Interrupt Procedure Vol.2A 3-471

INSTRUCTION SET REFERENCE, A-L

64-Bit Mode Exceptions

#GP(error_code)

#SS(error_code)

#NP(error_code)
#TS(error_code)

#PF(fault-code)

#UD
#AC(EXT)

3-472 Vol.2A

If the instruction pointer in the 64-bit interrupt gate or trap gate is non-canonical.

If the segment selector in the 64-bit interrupt or trap gate is NULL.

If the vector selects a descriptor outside the IDT limits.

If the vector points to a gate which is in non-canonical space.

If the vector points to a descriptor which is not a 64-bit interrupt gate or a 64-bit trap gate.
If the descriptor pointed to by the gate selector is outside the descriptor table limit.

If the descriptor pointed to by the gate selector is in non-canonical space.

If the descriptor pointed to by the gate selector is not a code segment.

If the descriptor pointed to by the gate selector doesn’t have the L-bit set, or has both the L-
bit and D-bit set.

If the descriptor pointed to by the gate selector has DPL > CPL.

If a push of the old EFLAGS, CS selector, EIP, or error code is in non-canonical space with no
stack switch.

If a push of the old SS selector, ESP, EFLAGS, CS selector, EIP, or error code is in non-canonical
space on a stack switch (either CPL change or no-CPL with IST).

If the 64-bit interrupt-gate, 64-bit trap-gate, or code segment is not present.

If an attempt to load RSP from the TSS causes an access to hon-canonical space.
If the RSP from the TSS is outside descriptor table limits.

If a page fault occurs.

If the LOCK prefix is used.

If alignment checking is enabled, the gate DPL is 3, and a stack push is unaligned.

INT n/INTO/INT3/INT1—Call to Interrupt Procedure

5. Updates to Chapter 4, Volume 2B

Change bars show changes to Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 2B: Instruction Set Reference, M-U.

Changes to this chapter: Updates to MOV, POP and STI instructions.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

INSTRUCTION SET REFERENCE, M-U

MOV—Move
Opcode Instruction Op/ | 64-Bit Compat/ |Description
En |Mode Leg Mode

88/r MOV r/m8,r8 MR | Valid Valid Move r81to r/m8.

REX +88/r MOV /m8 18 MR | Valid N.E. Move r8to r/m8.

89/r MOV r/m16,r16 MR | Valid Valid Move r16 to r/m16.

89/r MOV r/m32,r32 MR | Valid Valid Move r32to r/m32.

REXW +89/r MOV r/m64,r64 MR | Valid N.E. Move r64 to r/mé64.

8A/r MOV r8r/m8 RM | Valid Valid Move r/m8to r8.

REX+8A/r MOV r8*** r/m8*** RM | Valid N.E. Move r/m8to r8.

8B /r MOV r16,r/m16 RM | Valid Valid Move r/m16to r16.

8B/r MOV r32,r/m32 RM | Valid Valid Move r/m32 to r32.

REX.W + 8B /r MOV r64,r/m64 RM | Valid N.E. Move r/m64 to r64.

8C/r MOV r/m16,Sreg** MR | Valid Valid Move segment register to r/m16.

REX.W +8C/r MOV r16/r32/m16, Sreg** |MR | Valid Valid Move zero extended 16-bit segment register
to r16/r32/r64/m16.

REXW +8C/r MOV r64/m16, Sreg** MR | Valid Valid Move zero extended 16-bit segment register
to r64/m16.

8E/r MOV Sreg,r/m16** RM | Valid Valid Move r/m16 to segment register.

REX.W + 8E /r MOV Sreg,r/m64** RM | Valid Valid Move lower 16 bits of r/m64 to segment
register.

AO MOV AL moffs8* FD | Valid Valid Move byte at (seg:offset) to AL.

REX.W + AO MOV AL moffs8* FD Valid N.E. Move byte at (offset) to AL.

Al MOV AX,moffs16* FD | Valid Valid Move word at (seg:offset) to AX.

A1l MOV EAX,moffs32* FD | Valid Valid Move doubleword at (seg:offset) to EAX.

REX.W + A1 MOV RAX,moffs64* FD | Valid N.E. Move quadword at (offset) to RAX.

A2 MOV moffs8 AL TD | Valid Valid Move AL to (seg:offset).

REXW + A2 MOV moffs8 AL TD |Valid N.E. Move AL to (offset).

A3 MOV moffs16* AX TD |Valid Valid Move AX to (seg:offset).

A3 MOV moffs32*,EAX TD |Valid Valid Move EAX to (seg.offset).

REX.W + A3 MOV moffs64*,RAX TD | Valid N.E. Move RAX to (offset).

BO+ rbib MOV r8, imm8 Ol Valid Valid Move imm8to r8.

REX + BO+ rb ib MOV r8 , imm8 Ol Valid N.E. Move imm8to r8.

B8+ rw iw MOV r16, imm16 Ol Valid Valid Move imm16 to r16.

B8+ rd id MOV r32, imm32 ol |Valid Valid Move imm32 to r32.

REX.W + B8+ rd io MOV r64, imm64 Ol Valid N.E. Move imm64 to r64.

C6/0ib MOV r/m8, imm8 Ml | Valid Valid Move imm8 to r/m8.

REX+C6/0ib MOV r/m8***, imm8 Ml Valid N.E. Move imm8 to r/m8.

C7 10 iw MOV r/m16, imm16 Ml | Valid Valid Move imm16 to r/m16.

C7/0id MOV r/m32, imm32 Ml Valid Valid Move imm32 to r/m32.

REXW +C7/0id MOV r/m64, imm32 Ml | Valid N.E. Move imm32 sign extended to 64-bits to
r/m64.

MOV—Move

Vol.2B 4-35

INSTRUCTION SET REFERENCE, M-U

NOTES:

* The moffs8, moffs16, moffs32 and moffs64 operands specify a simple offset relative to the segment base, where 8, 16, 32 and 64
refer to the size of the data. The address-size attribute of the instruction determines the size of the offset, either 16, 32 or 64
bits.

**n 32-bit mode, the assembler may insert the 16-bit operand-size prefix with this instruction (see the following “Description” sec-
tion for further information).

***In 64-bit mode, r/m8 can not be encoded to access the following byte registers if a REX prefix is used: AH, BH, CH, DH.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
MR ModRM:r/m (w) ModRM:req (r) NA NA
RM ModRM:reg (w) ModRM:r/m (r) NA NA
FD AL/AX/EAX/RAX Moffs NA NA
D Moffs (w) AL/AX/EAX/RAX NA NA
ol opcode + rd (w) imm8/16/32/64 NA NA
Ml ModRM:r/m (w) imm8/16/32/64 NA NA
Description

Copies the second operand (source operand) to the first operand (destination operand). The source operand can be
an immediate value, general-purpose register, segment register, or memory location; the destination register can
be a general-purpose register, segment register, or memory location. Both operands must be the same size, which
can be a byte, a word, a doubleword, or a quadword.

The MOV instruction cannot be used to load the CS register. Attempting to do so results in an invalid opcode excep-
tion (#UD). To load the CS register, use the far JMP, CALL, or RET instruction.

If the destination operand is a segment register (DS, ES, FS, GS, or SS), the source operand must be a valid
segment selector. In protected mode, moving a segment selector into a segment register automatically causes the
segment descriptor information associated with that segment selector to be loaded into the hidden (shadow) part
of the segment register. While loading this information, the segment selector and segment descriptor information
is validated (see the “Operation” algorithm below). The segment descriptor data is obtained from the GDT or LDT
entry for the specified segment selector.

A NULL segment selector (values 0000-0003) can be loaded into the DS, ES, FS, and GS registers without causing
a protection exception. However, any subsequent attempt to reference a segment whose corresponding segment
register is loaded with a NULL value causes a general protection exception (#GP) and no memory reference occurs.

Loading the SS register with a MOV instruction suppresses or inhibits some debug exceptions and inhibits inter-
rupts on the following instruction boundary. (The inhibition ends after delivery of an exception or the execution of
the next instruction.) This behavior allows a stack pointer to be loaded into the ESP register with the next instruc-
tion (MOV ESP, stack-pointer value) before an event can be delivered. See Section 6.8.3, “Masking Exceptions
and Interrupts When Switching Stacks,” in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
3A. Intel recommends that software use the LSS instruction to load the SS register and ESP together.

When executing MOV Reg, Sreg, the processor copies the content of Sreg to the 16 least significant bits of the
general-purpose register. The upper bits of the destination register are zero for most 1A-32 processors (Pentium
Pro processors and later) and all Intel 64 processors, with the exception that bits 31:16 are undefined for Intel
Quark X1000 processors, Pentium and earlier processors.

In 64-bit mode, the instruction’s default operation size is 32 bits. Use of the REX.R prefix permits access to addi-
tional registers (R8-R15). Use of the REX.W prefix promotes operation to 64 bits. See the summary chart at the
beginning of this section for encoding data and limits.

4-36 Vol.2B MOV—Move

INSTRUCTION SET REFERENCE, M-U

Operation
DEST « SRC;

Loading a segment register while in protected mode results in special checks and actions, as described in the
following listing. These checks are performed on the segment selector and the segment descriptor to which it
points.

IF SS is loaded
THEN
IF segment selector is NULL
THEN #GP(0); FI;
IF segment selector index is outside descriptor table limits
OR segment selector’s RPL # CPL
OR segment is not a writable data segment
OR DPL # CPL
THEN #GP(selector); FI;
IF segment not marked present
THEN #SS(selector);
ELSE
SS « segment selector;
SS « segment descriptor; FI;
Fl;

IF DS, €S, FS, or GS is loaded with non-NULL selector
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment) AND ((RPL > DPL) or (CPL > DPL)))
THEN #GP(selector); FI;
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister < segment selector;
SegmentRegister < segment descriptor; Fl;
Fl;

IF DS, ES, FS, or GS is loaded with NULL selector
THEN
SegmentRegister < segment selector;
SegmentRegister < segment descriptor;
Fl;

Flags Affected

None

MOV—Move Vol.2B 4-37

INSTRUCTION SET REFERENCE, M-U

Protected Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#SS(selector)
#NP

#PF(fault-code)
#AC(0)

#UD

If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains a NULL segment selector.

If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a
non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, and either the RPL or the CPL is greater than the DPL.

If a memory operand effective address is outside the SS segment limit.
If the SS register is being loaded and the segment pointed to is marked not present.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not
present.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If attempt is made to load the CS register.
If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP
#SS
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS segment limit.

If attempt is made to load the CS register.

If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a memory operand effective address is outside the SS segment limit.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made.

If attempt is made to load the CS register.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

4-38 Vol.2B

MOV—Move

INSTRUCTION SET REFERENCE, M-U

64-Bit Mode Exceptions

#GP(0)

#GP(selector)

#SS(0)
#SS(selector)
#PF(fault-code)
#AC(0)

#UD

MOV—Move

If the memory address is in a non-canonical form.
If an attempt is made to load SS register with NULL segment selector when CPL = 3.

If an attempt is made to load SS register with NULL segment selector when CPL < 3 and CPL
#RPL.

If segment selector index is outside descriptor table limits.
If the memory access to the descriptor table is non-canonical.

If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a nonwritable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

If the stack address is in a hon-canonical form.
If the SS register is being loaded and the segment pointed to is marked not present.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is made while the
current privilege level is 3.

If attempt is made to load the CS register.
If the LOCK prefix is used.

Vol.2B 4-39

INSTRUCTION SET REFERENCE, M-U

POP—Pop a Value from the Stack

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
8F /0 POPr/mi6 M Valid Valid Pop top of stack into m16; increment stack
pointer.
8F /0 POP r/m32 M N.E. Valid Pop top of stack into m32, increment stack
pointer.
8F /0 POP r/m64 M Valid N.E. Pop top of stack into m64; increment stack
pointer. Cannot encode 32-bit operand size.
58+ rw POP r16 0 Valid Valid Pop top of stack into r16; increment stack
pointer.
58+ rd POP r32 0 N.E. Valid Pop top of stack into r32; increment stack
pointer.
58+ rd POP r64 0 Valid N.E. Pop top of stack into r64; increment stack
pointer. Cannot encode 32-bit operand size.
1F POP DS Z0 |Invalid Valid Pop top of stack into DS; increment stack
pointer.
07 POP €S Z0 |lInvalid Valid Pop top of stack into ES; increment stack
pointer.
17 POP SS Z0 |Invalid Valid Pop top of stack into SS; increment stack
pointer.
OF A1 POP FS Z0 |Valid Valid Pop top of stack into FS; increment stack
pointer by 16 bits.
OF A1 POP FS Z0 |NE Valid Pop top of stack into FS; increment stack
pointer by 32 bits.
OF A1 POP FS Z0 | Valid N.E. Pop top of stack into FS; increment stack
pointer by 64 bits.
OF A9 POP GS Z0 | Valid Valid Pop top of stack into GS; increment stack
pointer by 16 bits.
OF A9 POP GS Z0 |NE Valid Pop top of stack into GS; increment stack
pointer by 32 bits.
OF A9 POP GS Z0 | Valid N.E. Pop top of stack into GS; increment stack
pointer by 64 bits.
Instruction Operand Encoding
Op/En Operand 1 Operand 2 Operand 3 Operand 4
M ModRM:r/m (w) NA NA NA
0 opcode + rd (w) NA NA NA
Z20 NA NA NA NA
Description

Loads the value from the top of the stack to the location specified with the destination operand (or explicit opcode)
and then increments the stack pointer. The destination operand can be a general-purpose register, memory loca-
tion, or segment register.

Address and operand sizes are determined and used as follows:

® Address size. The D flag in the current code-segment descriptor determines the default address size; it may be
overridden by an instruction prefix (67H).

4-384 Vol. 2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-U

The address size is used only when writing to a destination operand in memory.

® Operand size. The D flag in the current code-segment descriptor determines the default operand size; it may
be overridden by instruction prefixes (66H or REX.W).

The operand size (16, 32, or 64 bits) determines the amount by which the stack pointer is incremented (2, 4
or 8).

¢ Stack-address size. Outside of 64-bit mode, the B flag in the current stack-segment descriptor determines the
size of the stack pointer (16 or 32 bits); in 64-bit mode, the size of the stack pointer is always 64 bits.

The stack-address size determines the width of the stack pointer when reading from the stack in memory and
when incrementing the stack pointer. (As stated above, the amount by which the stack pointer is incremented
is determined by the operand size.)

If the destination operand is one of the segment registers DS, ES, FS, GS, or SS, the value loaded into the register
must be a valid segment selector. In protected mode, popping a segment selector into a segment register automat-
ically causes the descriptor information associated with that segment selector to be loaded into the hidden
(shadow) part of the segment register and causes the selector and the descriptor information to be validated (see
the “Operation” section below).

A NULL value (0000-0003) may be popped into the DS, ES, FS, or GS register without causing a general protection
fault. However, any subsequent attempt to reference a segment whose corresponding segment register is loaded
with a NULL value causes a general protection exception (#GP). In this situation, no memory reference occurs and
the saved value of the segment register is NULL.

The POP instruction cannot pop a value into the CS register. To load the CS register from the stack, use the RET
instruction.

If the ESP register is used as a base register for addressing a destination operand in memory, the POP instruction
computes the effective address of the operand after it increments the ESP register. For the case of a 16-bit stack

where ESP wraps to OH as a result of the POP instruction, the resulting location of the memory write is processor-
family-specific.

The POP ESP instruction increments the stack pointer (ESP) before data at the old top of stack is written into the
destination.

Loading the SS register with a POP instruction suppresses or inhibits some debug exceptions and inhibits interrupts
on the following instruction boundary. (The inhibition ends after delivery of an exception or the execution of the
next instruction.) This behavior allows a stack pointer to be loaded into the ESP register with the next instruction
(POP ESP) before an event can be delivered. See Section 6.8.3, “Masking Exceptions and Interrupts When
Switching Stacks,” in Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A. Intel recom-
mends that software use the LSS instruction to load the SS register and ESP together.

In 64-bit mode, using a REX prefix in the form of REX.R permits access to additional registers (R8-R15). When in
64-bit mode, POPs using 32-bit operands are not encodable and POPs to DS, ES, SS are not valid. See the
summary chart at the beginning of this section for encoding data and limits.

Operation
IF StackAddrSize = 32
THEN
IF OperandSize = 32
THEN
DEST « SS:ESP; (* Copy a doubleword *)
ESP « ESP + 4;
ELSE (* OperandSize = 16%)
DEST « SS:ESP; (* Copy a word *)
ESP « ESP + 2;
FI;
ELSE IF StackAddrSize = 64
THEN
IF OperandSize = 64
THEN

POP—Pop a Value from the Stack Vol. 2B 4-385

INSTRUCTION SET REFERENCE, M-U

DEST « SS:RSP; (* Copy quadword *)
RSP « RSP + 8;

ELSE (* OperandSize = 16%)
DEST « SS:RSP; (* Copy a word *)

RSP « RSP + 2;
Fl;
Fl;
ELSE StackAddrSize =16
THEN
IF OperandSize = 16
THEN
DEST « SS:SP; (* Copy a word *)
SP « SP +2;
ELSE (* OperandSize =32 *)
DEST « SS:SP; (* Copy a doubleword *)
SP « SP + 4;
Fl;

Fl;

Loading a segment register while in protected mode results in special actions, as described in the following listing.
These checks are performed on the segment selector and the segment descriptor it points to.

64-BIT_MODE
IF FS, or GS is loaded with non-NULL selector;
THEN
IF segment selector index is outside descriptor table limits
OR segment is not a data or readable code segment
OR ((segment is a data or nonconforming code segment)
AND (both RPL and CPL > DPL))
THEN #GP(selector);
IF segment not marked present
THEN #NP(selector);
ELSE
SegmentRegister < segment selector;
SegmentRegister < segment descriptor;

Fl;
Fl;
IF FS, or GS is loaded with a NULL selector;
THEN
SegmentRegister < segment selector;
SegmentRegister < segment descriptor;
Fl;

PREOTECTED MODE OR COMPATIBILITY MODE;

IF SS is loaded;
THEN
IF segment selector is NULL
THEN #GP(0);
Fl;
IF segment selector index is outside descriptor table limits
or segment selector's RPL # CPL

4-386 Vol.2B POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-U

or segment is not a writable data segment

or DPL # CPL
THEN #GP(selector);
Fl;
IF segment not marked present
THEN #SS(selector);
ELSE

Fl;
Fl;

SS « segment selector;
SS « segment descriptor;

IF DS, ES, FS, or GS is loaded with non-NULL selector;

THEN

IF segment selector index is outside descriptor table limits
or segment is not a data or readable code segment
or ((segment is a data or nonconforming code segment)
and (both RPL and CPL > DPL))

THEN #GP(selector);
Fl;
IF segment not marked present
THEN #NP(selector);
ELSE

Fl;
Fl;

SegmentRegister < segment selector;
SegmentRegister < segment descriptor;

IF DS, ES, FS, or GS is loaded with a NULL selector

THEN

SegmentRegister < segment selector;
SegmentRegister < segment descriptor;

Fl;

Flags Affected

None.

Protected Mode Exceptions

#GP(0)

#GP(selector)

If attempt is made to load SS register with NULL segment selector.

If the destination operand is in a non-writable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register is used to access memory and it contains a NULL segment
selector.

If segment selector index is outside descriptor table limits.

If the SS register is being loaded and the segment selector's RPL and the segment descriptor’s
DPL are not equal to the CPL.

If the SS register is being loaded and the segment pointed to is a

non-writable data segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is not a data or
readable code segment.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is a data or
nonconforming code segment, but both the RPL and the CPL are greater than the DPL.

POP—Pop a Value from the Stack Vol.2B 4-387

INSTRUCTION SET REFERENCE, M-U

#SS(0)

#SS(selector)
#NP

#PF(fault-code)
#AC(0)

#UD

If the current top of stack is not within the stack segment.
If a memory operand effective address is outside the SS segment limit.
If the SS register is being loaded and the segment pointed to is marked not present.

If the DS, ES, FS, or GS register is being loaded and the segment pointed to is marked not
present.

If a page fault occurs.

If an unaligned memory reference is made while the current privilege level is 3 and alignment
checking is enabled.

If the LOCK prefix is used.

Real-Address Mode Exceptions

#GP
#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0)
#PF(fault-code)
#AC(0)

#UD

If a memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If a page fault occurs.

If an unaligned memory reference is made while alignment checking is enabled.

If the LOCK prefix is used.

Compatibility Mode Exceptions
Same as for protected mode exceptions.

64-Bit Mode Exceptions

#GP(0)
#SS(0)
#GP(selector)

#AC(0)
#PF(fault-code)
#NP

#UD

4-388 Vol. 2B

If the memory address is in a non-canonical form.
If the stack address is in a non-canonical form.
If the descriptor is outside the descriptor table limit.

If the FS or GS register is being loaded and the segment pointed to is not a data or readable
code segment.

If the FS or GS register is being loaded and the segment pointed to is a data or nonconforming
code segment, but both the RPL and the CPL are greater than the DPL.

If an unaligned memory reference is made while alignment checking is enabled.

If a page fault occurs.

If the FS or GS register is being loaded and the segment pointed to is marked not present.
If the LOCK prefix is used.

POP—Pop a Value from the Stack

INSTRUCTION SET REFERENCE, M-U

STI—Set Interrupt Flag

Opcode Instruction Op/ |64-Bit Compat/ |Description
En |Mode Leg Mode
FB STI Z0 | Valid Valid Set interrupt flag; external, maskable
interrupts enabled at the end of the next
instruction.

Instruction Operand Encoding

Op/En Operand 1 Operand 2 Operand 3 Operand 4
Z0 NA NA NA NA
Description

In most cases, STI sets the interrupt flag (IF) in the EFLAGS register. This allows the processor to respond to mask-
able hardware interrupts.

If IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.
(The delayed effect of this instruction is provided to allow interrupts to be enabled just before returning from a
procedure or subroutine. For instance, if an STI instruction is followed by an RET instruction, the RET instruction is
allowed to execute before external interrupts are recognized. No interrupts can be recognized if an execution of CLI
immediately follow such an execution of STI.) The inhibition ends after delivery of another event (e.g., exception)
or the execution of the next instruction.

The IF flag and the STI and CLI instructions do not prohibit the generation of exceptions and nonmaskable inter-
rupts (NMIs). However, NMIs (and system-management interrupts) may be inhibited on the instruction boundary
following an execution of STI that begins with IF = 0.

Operation is different in two modes defined as follows:
®* PVI mode (protected-mode virtual interrupts): CRO.PE = 1, EFLAGS.VM = 0, CPL = 3, and CR4.PVI = 1;
®* VME mode (virtual-8086 mode extensions): CRO.PE = 1, EFLAGS.VM = 1, and CR4.VME = 1.

If IOPL < 3, EFLAGS.VIP = 1, and either VME mode or PVl mode is active, STI sets the VIF flag in the EFLAGS
register, leaving IF unaffected.

Table 4-19 indicates the action of the STI instruction depending on the processor operating mode, I10PL, CPL, and
EFLAGS.VIP.

Table 4-19. Decision Table for STI Results

Mode I0PL EFLAGS.VIP STI Result

Real-address X! X IF=1

Protected, not PVI2 2P X IF=1
<CPL X #GP fault

3 X IF=1

Protected, PVI3 0 VIF = 1
0-2 1 #GP fault

Virtual-8086, not VME3 > X rel
0-2 X #GP fault

3 X IF=1

Virtual-8086, VME3 02 0 VIF = 1
1 #GP fault

NOTES:
1. X = This setting has no effect on instruction operation.

STI—Set Interrupt Flag Vol. 2B 4-641

INSTRUCTION SET REFERENCE, M-U

2. For this table, “protected mode” applies whenever CRO.PE = 1 and EFLAGS.VM = Q; it includes compatibility mode and 64-bit mode.

3. PVI mode and virtual-8086 mode each imply CPL = 3.

Operation

IF CRO.PE=0 (* Executing in real-address mode *)
THEN IF < 1; (* Set Interrupt Flag *)
ELSE
IFIOPL > CPL (*CPL = 3 if EFLAGS.VM =1 *)
THEN IF < 1; (* Set Interrupt Flag *)

ELSE
IF VME mode OR PVI mode
THEN
IF EFLAGS.VIP =0
THEN VIF « 1; (* Set Virtual Interrupt Flag *)
ELSE #GP(0);
Fl;
ELSE #GP(0);
Fl;
Fl;
Fl;
Flags Affected

Either the IF flag or the VIF flag is set to 1. Other flags are unaffected.

Protected Mode Exceptions

#GP(0) If CPL is greater than IOPL and PVI mode is not active.

If CPL is greater than IOPL and EFLAGS.VIP = 1.
#UD If the LOCK prefix is used.

Real-Address Mode Exceptions
#UD If the LOCK prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If IOPL is less than 3 and VME mode is not active.
If IOPL is less than 3 and EFLAGS.VIP = 1.
#UD If the LOCK prefix is used.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.

4-642 Vol.2B

STI—Set Interrupt Flag

6. Updates to Appendix A, Volume 2D

Change bars show changes to Appendix A of the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 2D: Instruction Set Reference.

Change to this chapter: Updates to Table A-2 "One-byte Opcode Map”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

APPENDIX A
OPCODE MAP

Use the opcode tables in this chapter to interpret IA-32 and Intel 64 architecture object code. Instructions are
divided into encoding groups:

®* 1-byte, 2-byte and 3-byte opcode encodings are used to encode integer, system, MMX technology,
SSE/SSE2/SSE3/SSSE3/SSE4, and VMX instructions. Maps for these instructions are given in Table A-2
through Table A-6.

® Escape opcodes (in the format: ESC character, opcode, ModR/M byte) are used for floating-point instructions.
The maps for these instructions are provided in Table A-7 through Table A-22.

NOTE

All blanks in opcode maps are reserved and must not be used. Do not depend on the operation of
undefined or blank opcodes.

A.1 USING OPCODE TABLES

Tables in this appendix list opcodes of instructions (including required instruction prefixes, opcode extensions in
associated ModR/M byte). Blank cells in the tables indicate opcodes that are reserved or undefined. Cells marked
“Reserved-NOP” are also reserved but may behave as NOP on certain processors. Software should not use opcodes
corresponding blank cells or cells marked “Reserved-NOP” nor depend on the current behavior of those opcodes.

The opcode map tables are organized by hex values of the upper and lower 4 bits of an opcode byte. For 1-byte
encodings (Table A-2), use the four high-order bits of an opcode to index a row of the opcode table; use the four
low-order bits to index a column of the table. For 2-byte opcodes beginning with OFH (Table A-3), skip any instruc-
tion prefixes, the OFH byte (OFH may be preceded by 66H, F2H, or F3H) and use the upper and lower 4-bit values
of the next opcode byte to index table rows and columns. Similarly, for 3-byte opcodes beginning with OF38H or
OF3AH (Table A-4), skip any instruction prefixes, 0F38H or OF3AH and use the upper and lower 4-bit values of the
third opcode byte to index table rows and columns. See Section A.2.4, “Opcode Look-up Examples for One, Two,
and Three-Byte Opcodes.”

When a ModR/M byte provides opcode extensions, this information qualifies opcode execution. For information on
how an opcode extension in the ModR/M byte modifies the opcode map in Table A-2 and Table A-3, see Section A.4.

The escape (ESC) opcode tables for floating point instructions identify the eight high order bits of opcodes at the
top of each page. See Section A.5. If the accompanying ModR/M byte is in the range of 00H-BFH, bits 3-5 (the top
row of the third table on each page) along with the reg bits of ModR/M determine the opcode. ModR/M bytes
outside the range of 00H-BFH are mapped by the bottom two tables on each page of the section.

A.2 KEY TO ABBREVIATIONS

Operands are identified by a two-character code of the form Zz. The first character, an uppercase letter, specifies
the addressing method; the second character, a lowercase letter, specifies the type of operand.

A.2.1 Codes for Addressing Method

The following abbreviations are used to document addressing methods:

A Direct address: the instruction has no ModR/M byte; the address of the operand is encoded in the instruc-
tion. No base register, index register, or scaling factor can be applied (for example, far JMP (EA)).

B The VEX.vvvy field of the VEX prefix selects a general purpose register.

Vol.2D A-1

OPCODE MAP

A.2.2

The reg field of the ModR/M byte selects a control register (for example, MOV (0F20, 0F22)).

The reg field of the ModR/M byte selects a debug register (for example,
MOV (0F21,0F23)).

A ModR/M byte follows the opcode and specifies the operand. The operand is either a general-purpose
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, a displacement.

EFLAGS/RFLAGS Register.
The reg field of the ModR/M byte selects a general register (for example, AX (000)).

The VEX.vvvy field of the VEX prefix selects a 128-bit XMM register or a 256-bit YMM register, determined
by operand type. For legacy SSE encodings this operand does not exist, changing the instruction to
destructive form.

Immediate data: the operand value is encoded in subsequent bytes of the instruction.

The instruction contains a relative offset to be added to the instruction pointer register (for example, JMP
(OE9), LOOP).

The upper 4 bits of the 8-bit immediate selects a 128-bit XMM register or a 256-bit YMM register, deter-
mined by operand type. (the MSB is ignored in 32-bit mode)

The ModR/M byte may refer only to memory (for example, BOUND, LES, LDS, LSS, LFS, LGS,
CMPXCHGSB).

The R/M field of the ModR/M byte selects a packed-quadword, MMX technology register.

The instruction has no ModR/M byte. The offset of the operand is coded as a word or double word
(depending on address size attribute) in the instruction. No base register, index register, or scaling factor
can be applied (for example, MOV (A0-A3)).

The reg field of the ModR/M byte selects a packed quadword MMX technology register.

A ModR/M byte follows the opcode and specifies the operand. The operand is either an MMX technology
register or a memory address. If it is a memory address, the address is computed from a segment register
and any of the following values: a base register, an index register, a scaling factor, and a displacement.

The R/M field of the ModR/M byte may refer only to a general register (for example, MOV (0F20-0F23)).
The reg field of the ModR/M byte selects a segment register (for example, MOV (8C,8E)).

The R/M field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

The reg field of the ModR/M byte selects a 128-bit XMM register or a 256-bit YMM register, determined by
operand type.

A ModR/M byte follows the opcode and specifies the operand. The operand is either a 128-bit XMM register,
a 256-bit YMM register (determined by operand type), or a memory address. If it is a memory address, the
address is computed from a segment register and any of the following values: a base register, an index
register, a scaling factor, and a displacement.

Memory addressed by the DS:rSI register pair (for example, MOVS, CMPS, OUTS, or LODS).
Memory addressed by the ES:rDI register pair (for example, MOVS, CMPS, INS, STOS, or SCAS).

Codes for Operand Type

The following abbreviations are used to document operand types:

a

Two one-word operands in memory or two double-word operands in memory, depending on operand-size
attribute (used only by the BOUND instruction).

Byte, regardless of operand-size attribute.
Byte or word, depending on operand-size attribute.

Doubleword, regardless of operand-size attribute.

A-2 Vol.2D

OPCODE MAP

dq Double-quadword, regardless of operand-size attribute.

p 32-bit, 48-bit, or 80-bit pointer, depending on operand-size attribute.
pd 128-bit or 256-bit packed double-precision floating-point data.

pi Quadword MMX technology register (for example: mmO).

ps 128-bit or 256-bit packed single-precision floating-point data.

g Quadword, regardless of operand-size attribute.

aq Quad-Quadword (256-bits), regardless of operand-size attribute.

s 6-byte or 10-byte pseudo-descriptor.

sd Scalar element of a 128-bit double-precision floating data.
ss Scalar element of a 128-bit single-precision floating data.
Si Doubleword integer register (for example: eax).

Word, doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
Word, regardless of operand-size attribute.

v
w

X dq or qq based on the operand-size attribute.

y Doubleword or quadword (in 64-bit mode), depending on operand-size attribute.
z

Word for 16-bit operand-size or doubleword for 32 or 64-bit operand-size.

A.23 Register Codes

When an opcode requires a specific register as an operand, the register is identified by name (for example, AX, CL,
or ESI). The name indicates whether the register is 64, 32, 16, or 8 bits wide.

A register identifier of the form eXX or rXX is used when register width depends on the operand-size attribute. eXX
is used when 16 or 32-bit sizes are possible; rXX is used when 16, 32, or 64-bit sizes are possible. For example:
eAX indicates that the AX register is used when the operand-size attribute is 16 and the EAX register is used when
the operand-size attribute is 32. rAX can indicate AX, EAX or RAX.

When the REX.B bit is used to modify the register specified in the reg field of the opcode, this fact is indicated by
adding “/x” to the register name to indicate the additional possibility. For example, rCX/r9 is used to indicate that
the register could either be rCX or r9. Note that the size of r9 in this case is determined by the operand size attri-
bute (just as for rCX).

A24 Opcode Look-up Examples for One, Two, and Three-Byte Opcodes

This section provides examples that demonstrate how opcode maps are used.

A.2.4.1 One-Byte Opcode Instructions

The opcode map for 1-byte opcodes is shown in Table A-2. The opcode map for 1-byte opcodes is arranged by row
(the least-significant 4 bits of the hexadecimal value) and column (the most-significant 4 bits of the hexadecimal
value). Each entry in the table lists one of the following types of opcodes:

* Instruction mnemonics and operand types using the notations listed in Section A.2
® Opcodes used as an instruction prefix

For each entry in the opcode map that corresponds to an instruction, the rules for interpreting the byte following
the primary opcode fall into one of the following cases:

* A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.
Operand types are listed according to notations listed in Section A.2.

Vol.2D A-3

OPCODE MAP

®* A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

®* Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction prefix or
entries for instructions without operands that use ModR/M (for example: 60H, PUSHA; 06H, PUSH ES).

Example A-1. Look-up Example for 1-Byte Opcodes
Opcode 030500000000H for an ADD instruction is interpreted using the 1-byte opcode map (Table A-2) as follows:

®* The first digit (0) of the opcode indicates the table row and the second digit (3) indicates the table column. This
locates an opcode for ADD with two operands.

®* The first operand (type Gv) indicates a general register that is a word or doubleword depending on the operand-
size attribute. The second operand (type Ev) indicates a ModR/M byte follows that specifies whether the
operand is a word or doubleword general-purpose register or a memory address.

®* The ModR/M byte for this instruction is 05H, indicating that a 32-bit displacement follows (00000000H). The
reg/opcode portion of the ModR/M byte (bits 3-5) is 000, indicating the EAX register.

The instruction for this opcode is ADD EAX, mem_op, and the offset of mem_op is 00000000H.

Some 1- and 2-byte opcodes point to group numbers (shaded entries in the opcode map table). Group numbers
indicate that the instruction uses the reg/opcode bits in the ModR/M byte as an opcode extension (refer to Section
A.4).

A2.4.2 Two-Byte Opcode Instructions

The two-byte opcode map shown in Table A-3 includes primary opcodes that are either two bytes or three bytes in
length. Primary opcodes that are 2 bytes in length begin with an escape opcode OFH. The upper and lower four bits
of the second opcode byte are used to index a particular row and column in Table A-3.

Two-byte opcodes that are 3 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and the escape
opcode (OFH). The upper and lower four bits of the third byte are used to index a particular row and column in Table
A-3 (except when the second opcode byte is the 3-byte escape opcodes 38H or 3AH; in this situation refer to
Section A.2.4.3).

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into one of
the following cases:

®* A ModR/M byte is required and is interpreted according to the abbreviations listed in Section A.1 and Chapter
2, “Instruction Format,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.
The operand types are listed according to notations listed in Section A.2.

®* A ModR/M byte is required and includes an opcode extension in the reg field in the ModR/M byte. Use Table A-6
when interpreting the ModR/M byte.

® Use of the ModR/M byte is reserved or undefined. This applies to entries that represent an instruction without
operands that are encoded using ModR/M (for example: OF77H, EMMS).

Example A-2. Look-up Example for 2-Byte Opcodes
Look-up opcode OFA4050000000003H for a SHLD instruction using Table A-3.

® The opcode is located in row A, column 4. The location indicates a SHLD instruction with operands Ev, Gv, and
Ib. Interpret the operands as follows:

— Ev: The ModR/M byte follows the opcode to specify a word or doubleword operand.
— Gv: The reg field of the ModR/M byte selects a general-purpose register.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

®* The third byte is the ModR/M byte (05H). The mod and opcode/reg fields of ModR/M indicate that a 32-bit
displacement is used to locate the first operand in memory and eAX as the second operand.

® The next part of the opcode is the 32-bit displacement for the destination memory operand (00000000H). The
last byte stores immediate byte that provides the count of the shift (03H).

A-4 Vol.2D

OPCODE MAP

® By this breakdown, it has been shown that this opcode represents the instruction: SHLD DS:00000000H, EAX,
3.

A.24.3 Three-Byte Opcode Instructions

The three-byte opcode maps shown in Table A-4 and Table A-5 includes primary opcodes that are either 3 or 4
bytes in length. Primary opcodes that are 3 bytes in length begin with two escape bytes OF38H or OF3A. The upper
and lower four bits of the third opcode byte are used to index a particular row and column in Table A-4 or Table A-5.

Three-byte opcodes that are 4 bytes in length begin with a mandatory prefix (66H, F2H, or F3H) and two escape
bytes (0F38H or OF3AH). The upper and lower four bits of the fourth byte are used to index a particular row and
column in Table A-4 or Table A-5.

For each entry in the opcode map, the rules for interpreting the byte following the primary opcode fall into the
following case:

®* A ModR/M byte is required and is interpreted according to the abbreviations listed in A.1 and Chapter 2,
“Instruction Format,” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A. The
operand types are listed according to notations listed in Section A.2.

Example A-3. Look-up Example for 3-Byte Opcodes
Look-up opcode 660F3A0FC108H for a PALIGNR instruction using Table A-5.

® 66H is a prefix and OF3AH indicate to use Table A-5. The opcode is located in row 0, column F indicating a
PALIGNR instruction with operands Vdq, Wdgq, and Ib. Interpret the operands as follows:

— Vdq: The reg field of the ModR/M byte selects a 128-bit XMM register.
— Wdq: The R/M field of the ModR/M byte selects either a 128-bit XMM register or memory location.
— Ib: Immediate data is encoded in the subsequent byte of the instruction.

®* The next byte is the ModR/M byte (C1H). The reg field indicates that the first operand is XMMO0. The mod shows
that the R/M field specifies a register and the R/M indicates that the second operand is XMM1.
® The last byte is the immediate byte (08H).

®* By this breakdown, it has been shown that this opcode represents the instruction: PALIGNR XMMO0O, XMM1, 8.

A.2.4.4 VEX Prefix Instructions

Instructions that include a VEX prefix are organized relative to the 2-byte and 3-byte opcode maps, based on the
VEX.mmmmm field encoding of implied OF, OF38H, OF3AH, respectively. Each entry in the opcode map of a VEX-
encoded instruction is based on the value of the opcode byte, similar to non-VEX-encoded instructions.

A VEX prefix includes several bit fields that encode implied 66H, F2H, F3H prefix functionality (VEX.pp) and
operand size/opcode information (VEX.L). See chapter 4 for details.

Opcode tables A2-A6 include both instructions with a VEX prefix and instructions without a VEX prefix. Many entries
are only made once, but represent both the VEX and non-VEX forms of the instruction. If the VEX prefix is present
all the operands are valid and the mnemonic is usually prefixed with a “v”. If the VEX prefix is not present the
VEX.vvvv operand is not available and the prefix “v” is dropped from the mnemonic.

A few instructions exist only in VEX form and these are marked with a superscript “v”.

Operand size of VEX prefix instructions can be determined by the operand type code. 128-bit vectors are indicated
by 'dq', 256-bit vectors are indicated by 'qq', and instructions with operands supporting either 128 or 256-bit,
determined by VEX.L, are indicated by 'x'. For example, the entry "VMOVUPD Vx,Wx" indicates both VEX.L=0 and
VEX.L=1 are supported.

Vol.2D A-5

OPCODE MAP

A.2.5 Superscripts Utilized in Opcode Tables

Table A-1 contains notes on particular encodings. These notes are indicated in the following opcode maps by super-
scripts. Gray cells indicate instruction groupings.

Table A-1. Superscripts Utilized in Opcode Tables

Superscript Meaning of Symbol

Symbol

1A Bits 5, 4, and 3 of ModR/M byte used as an opcode extension (refer to Section A.4, “Opcode Extensions For One-Byte
And Two-byte Opcodes”).

1B Use the OFOB opcode (UD?2 instruction), the OFBSH opcode (UD1 instruction), or the OFFFH opcode (UDO instruction)
when deliberately trying to generate an invalid opcode exception (#UD).

1C Some instructions use the same two-byte opcode. If the instruction has variations, or the opcode represents
different instructions, the ModR/M byte will be used to differentiate the instruction. For the value of the ModR/M
byte needed to decode the instruction, see Table A-6.

i64 The instruction is invalid or not encodable in 64-bit mode. 40 through 4F (single-byte INC and DEC) are REX prefix
combinations when in 64-bit mode (use FE/FF Grp 4 and 5 for INC and DEC).

064 Instruction is only available when in 64-bit mode.

de4 When in 64-bit mode, instruction defaults to 64-bit operand size and cannot encode 32-bit operand size.

64 The operand size is forced to a 64-bit operand size when in 64-bit mode (prefixes that change operand size are
ignored for this instruction in 64-bit mode).

v VEX form only exists. There is no legacy SSE form of the instruction. For Integer GPR instructions it means VEX
prefix required.

v1 VEX128 & SSE forms only exist (no VEX256), when can't be inferred from the data size.

A.3 ONE, TWO, AND THREE-BYTE OPCODE MAPS

See Table A-2 through Table A-5 below. The tables are multiple page presentations. Rows and columns with
sequential relationships are placed on facing pages to make look-up tasks easier. Note that table footnotes are not
presented on each page. Table footnotes for each table are presented on the last page of the table.

A-6 Vol.2D

Table A-2. One-byte Opcode Map: (OOH — F7H) *

OPCODE MAP

0 | 1 | 2 | 3 | 4 | 5 6 7
ADD PUSH POP
Esi64 Esi64
Eb, Gb ‘ Ev, Gv ‘ Gb, Eb ‘ Gv, Ev ‘ AL, Ib ‘ rAX, 1z
ADC PUSH POP
Ssi64 Ssi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, 1z
AND SEG=ES DAAi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, 1z (Prefix)
XOR SEG=SS AAAIS4
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz (Prefix)
INC'84 general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eSl eDI
REX REX.B REX.X REX.XB REX.R REX.RB REX.RX REX.RXB
PUSHY64 general register
rAX/r8 rCX/r9 rDX/r10 rBX/r11 rSP/r12 rBP/r13 rSl/ir14 rDI/r15
PUSHA4/ POPAi%%/ BOUND®* ARPL®4 SEG=FS SEG=GS Operand Address
PUSHAD/64 POPADI64 Gv, Ma Ew, Gw (Prefix) (Prefix) Size Size
MOVSXD64 (Prefix) (Prefix)
Gy, Ev
Jec4, b - Short-displacement jump on condition
o NO B/NAE/C NB/AE/NC ZIE NZ/NE BE/NA NBE/A
Immediate Grp 1'A TEST XCHG
Eb, Ib Ev, Iz Eb, b Ev, Ib Eb, Gb Ev, Gv Eb, Gb Ev, Gv
NOP XCHG word, double-word or quad-word register with rAX
PAUSE(F3) rCX/r9 rDX/r10 BX/r11 rSP/r12 BP/r13 rSl/r14 DI/r15
XCHG r8, rAX
MOV MOVS/B MOVS/W/D/Q CMPS/B CMPS/W/D
AL, Ob | rAX, Ov | Ob, AL | Ov, rAX Yb, Xb Yv Xv Xb, Yb Xv, Y
MOV immediate byte into byte register
AL/RSL, Ib | CL/RIL, Ib DL/R10L, Ib BL/R11L, Ib AH/R12L, Ib CH/R13L, Ib DH/R14L, Ib BH/R15L, Ib
Shift Grp 2'A near RET4 near RET4 LES®* LDs®4 Grp 11'A - MOV
lw Gz, Mp Gz, Mp
Eb, Ib ‘ Ev, Ib VEx+2byte VEx+byte Eb, Ib Ev, Iz
Shift Grp 2'A AAMiE4 AAD®4 XLAT/
Eb, 1 Ev, 1 Eb, CL Ev, CL b b XLATB
LOOPNEZ‘:/ LOOPEffZi/ LOOPf4 Jrexz4/ IN ouT
LOOPNZ LoopPz Jo Jo AL, Ib eAX, Ib Ib, AL Ib, eAX
Jb Jb
LOCK INT1 REPNE REP/REPE HLT cMC Unary Grp 3'A
(Prefix) XACQUIRE XRELEASE Eb =
(Prefix) (Prefix)

Vol.2D A-7

OPCODE MAP

Table A-2. One-byte Opcode Map: (08H — FFH) *

8 | 9 | A | B | c | D E F
0 OR PUSH 2-byte
Eb, Gb Ev, G Gb, Eb Gy, E AL, Ib rAX, | cst escape
J | v, GV ‘ J ‘ v, BV ‘ ’ ‘ 12 (Table A-3)
1 SBB PUSH POP
Dsi64 DSi64
Eb, Gb | Ev, Gv | Gb, Eb | Gv, Ev | AL, Ib | rAX, Iz
2 suB SEG=CS DAS®4
Eb, Gb | Ev, Gv | Gb, Eb | Gy, Ev | AL, Ib | rAX, Iz (Prefix)
3 CMP SEG=DS AAS®4
Ene | Ewev | ebE | evev | AL, Ib | mxz (Prefix)
4 DEC'®4 general register / REX°%* Prefixes
eAX eCX eDX eBX eSP eBP eS| eDI
REX.W REX.WB REX.WX REX.WXB REX.WR REX.WRB REX.WRX REX.WRXB
5 POP94 into general register
rAX/r8 rCX/r9 rDX/r10 BX/r11 rSP/r12 rBP/r13 rSl/ir14 rDI/r15
6 PUSHY64 IMUL PUSHI64 IMUL INS/ INS/ ouTS/ ouTS/
Iz Gv, Ev, Iz Ib Gv, Ev, Ib INSB INSW/ OUTSB ouTSW/
Yb, DX INSD DX, Xb OUTSD
Yz, DX DX, Xz
7 Jec™®, Jb- Short displacement jump on condition
s NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
8 MOV MOV LEA MOV Grp 1A'A popds4
Eb, Gb Ev, Gv Gb, Eb Gv, Ev Bv, Sw Gv. M Sw, Ew Y
9 CBW/ CcwD/ far CALL® FWAIT/ PUSHF/D/Q 964/ | POPF/D/Q 964/ SAHF LAHF
CWDE/ cDQ/ Ap WAIT Fv Fv
CDQE cQo
A TEST STOS/B STOS/W/D/IQ LODS/B LODS/W/D/Q SCAS/B SCAS/W/D/Q
Yb, AL Yv, rAX AL, Xb rAX, Xv AL, Yb rAX, Yv
AL, Ib rAX, Iz
B MOV immediate word or double into word, double, or quad register
rAX/r8, v rCX/r9, lv rDX/r10, Iv BX/r11, Iv rSP/r12, Iv BP/r13, Iv rSi/r14, Iv DI/r5, Iv
[ENTER LEAVE?64 far RET far RET INT3 INT INTO4 IRET/D/Q
Iw, Ib Iw Ib
D ESC (Escape to coprocessor instruction set)
E near CALL64 JMP IN ouT
Jz nearf®4 fari®4 shortf®4 AL, DX eAX, DX DX, AL DX, eAX
Jz Ap Jb
F cLC sTC cLI STI CLD STD INC/DEC INC/DEC
Grp 41A Grp 51A
NOTES:

*

A-8 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

OPCODE MAP

Table A-3. Two-byte Opcode Map: 00H — 77H (First Byte is OFH) *
pfx 0 1 2 3 4 5 6 7
Grp 6'A Grp 7'A LAR LSL SYSCALL%%4 CLTS SYSRET?%4
Gy, Ew Gy, Ew
vmovups vmovups vmovlps vmovlps vunpckips vunpckhps vmovhps"1 vmovhps"1
Vps, Wps Wps, Vps Vq, Hq, Mq Maq, Vq Vx, Hx, Wx Vx, Hx, Wx Vdq, Hq, Mq Mg, Vq
vmovhlps vmovlhps
Va, Ha, Ug Vdq, Ha, Ug
66 vmovupd vmovupd vmovlpd vmovlpd vunpcklpd vunpckhpd vmovhpd"1 vmovhpd"1
Vpd, Wpd Wpd,Vpd Vq, Hq, Mq Mg, Vq Vx,Hx,Wx Vx,Hx,Wx Vdq, Hq, Mq Mg, Vq
F3 vmovss vmovss vmovsldup vmovshdup
Vx, Hx, Wss Wss, Hx, Vss Vx, Wx Vx, Wx
F2 vmovsd vmovsd vmovddup
Vx, Hx, Wsd Wsd, Hx, Vsd Vx, Wx
MOV MOV MOV MOV
Rd, Cd Rd, Dd Cd, Rd Dd, Rd
WRMSR RDTSC RDMSR RDPMC SYSENTER SYSEXIT GETSEC
CMOVce, (Gv, Ev) - Conditional Move
(0] NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
vmovmskps vsqrtps vrsqgrtps vrcpps vandps vandnps vorps VXorps
Gy, Ups Vps, Wps Vps, Wps Vps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vmovmskpd vsqrtpd vandpd vandnpd vorpd vxorpd
Gy,Upd Vpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vsqrtss vrsqgrtss Vrepss
Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
vsqrtsd
F2 Vsd, Hsd, Wsd
punpcklbw punpcklwd punpckldg packsswb pcmpgtb pcmpgtw pcmpgtd packuswb
Pq, Qd Pq, Qd Pq, Qd Pq, Qq Pq, Qq Pqg, Qq Pq, Qq Pq, Qq
66 vpunpcklbw vpunpcklwd vpunpckldg vpacksswb vpcmpgtb vpempgtw vpcmpgtd vpackuswb
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
pshufw (Grp 1214 (Grp 13™4) (Grp 14A) pcmpegb pcmpeqw pcmpeqd emms
Pq, Qq, Ib Pqg, Qq Pq, Qq Pqg, Qq vzeroupper"
vzeroall”
66 vpshufd vpcmpegb vpcmpeqw vpcmpeqd
Vx, Wx, Ib Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
vpshufhw
F3 Vi, W, Ib
vpshuflw
F2 Vx, W, Ib

Vol.2D A-9

OPCODE MAP

Table A-3. Two-byte Opcode Map: 08H — 7FH (First Byte is OFH) *

pfx 8 9 A B C D E F
INVD WBINVD 2-byte megal prefetchw(/1)
0 Opcodes Ev
uD2'8
Prefetch11A“ Reserved-NOP bndldx bndstx Reserved-NOP NOP /0 Ev
66 (Grp 16™) bndmov bndmov
1 F3 bndcl bndmk
bndcu bndcn
F2
vmovaps vmovaps cvtpi2ps vmovntps cvttps2pi cvtps2pi vucomiss vcomiss
Vps, Wps Wps, Vps Vps, Qpi Mps, Vps Ppi, Wps Ppi, Wps Vss, Wss Vss, Wss
66 vmovapd vmovapd cvtpi2pd vmovntpd cvttpd2pi cvtpd2pi vucomisd vcomisd
5 Vpd, Wpd Wpd,Vpd Vpd, Qpi Mpd, Vpd Ppi, Wpd Qpi, Wpd Vsd, Wsd Vsd, Wsd
F3 vevtsi2ss vevttss2si vevtss2si
Vss, Hss, Ey Gy, Wss Gy, Wss
F2 vevtsi2sd vevttsd2si vevtsd2si
Vsd, Hsd, Ey Gy, Wsd Gy, Wsd
3-byte escape 3-byte escape
3 (Table A-4) (Table A-5)
CMOVcc(Gy, Ev) - Conditional Move
4 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
vaddps vmulps vevtps2pd vevtdg2ps vsubps vminps vdivps vmaxps
Vps, Hps, Wps Vps, Hps, Wps Vpd, Wps Vps, Wdq Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps Vps, Hps, Wps
66 vaddpd vmulpd vevipd2ps vevips2dq vsubpd vminpd vdivpd vmaxpd
5 Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vps, Wpd Vdq, Wps Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd Vpd, Hpd, Wpd
F3 vaddss vmulss vevtss2sd vevttps2dq vsubss vminss vdivss vmaxss
Vss, Hss, Wss Vss, Hss, Wss Vsd, Hx, Wss Vdq, Wps Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss Vss, Hss, Wss
F2 vaddsd vmulsd vevtsd2ss vsubsd vminsd vdivsd vmaxsd
Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vss, Hx, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd Vsd, Hsd, Wsd
punpckhbw punpckhwd punpckhdq packssdw movd/q movq
Pq, Qd Pq, Qd Pq, Qd Pq, Qd Pd, Ey Pq, Qq
6 66 vpunpckhbw vpunpckhwd vpunpckhdq vpackssdw vpunpckigdq vpunpckhqdq vmovd/q vmovdga
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vy, Ey Vx, Wx
vmovdqu
F3 Vx, Wx
VMREAD VMWRITE movd/q movq
Ey, Gy Gy, Ey Ey, Pd Qq, Pq
66 vhaddpd vhsubpd vmovd/q vmovdga
Vpd, Hpd, Wpd Vpd, Hpd, Wpd Ey, Vy Wx,Vx
7 F3 vmovq vmovdqu
Vg, Wq Wx,Vx
vhaddps vhsubps
F2 Vps, Hps, Wps Vps, Hps, Wps

A-10 Vol.2D

Table A-3. Two-byte Opcode Map: 80H — F7H (First Byte is OFH) *

OPCODE MAP

pfx 0 | 1 | 2 | 3 | 4 | 5 | 6 7
Jec™4 Jz - Long-displacement jump on condition
(¢] NO B/CNAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
SETcc, Eb - Byte Set on condition
(0] NO B/C/NAE AE/NB/NC E/Z NE/NZ BE/NA A/NBE
PUSHd64 POPI0A CPUID BT SHLD SHLD
FS FS Ev, Gv Ev, Gy, Ib Ev, Gy, CL
CMPXCHG LSS BTR LFS LGS MOVZX
Eb, Gb Ev, Gv Gv. Mp Ev, Gv Gv. Mp Gv. Mp Gv, Eb Gv, Ew
XADD XADD vempps movnti pinsrw pextrw vshufps Grp g'A
Eb, Gb Ev, Gv Vps,Hps,Wps,Ib My, Gy Pq,Ry/Mw,lb Gd, Nq, Ib Vps,Hps,Wps,|b
66 vemppd vpinsrw vpextrw vshufpd
Vpd,Hpd,Wpd,Ib Vdq,Hdq,Ry/Mw,Ib Gd, Udq, Ib Vpd,Hpd,Wpd,Ib
vempss
F3 Vss,Hss,Wss,Ib
F2 vempsd
Vsd,Hsd,Wsd,Ib
psriw psrid psrigq paddq pmullw pmovmskb
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Gd, Nq
66 vaddsubpd vpsriw vpsrid vpsriq vpaddq vpmullw vmovq vpmovmskb
Vpd, Hpd, Wpd Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Wq, Vq Gd, Ux
movg2dq
F3 Vdag, Nq
F2 vaddsubps movdqg2q
Vps, Hps, Wps Pqg, Uq
pavgb psraw psrad pavgw pmulhuw pmulhw movntq
Pg, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Ma, Pq
66 vpavgb vpsraw vpsrad vpavgw vpmulhuw vpmulhw vevttpd2dq vmovntdq
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Wpd Mx, Vx
vevtdg2pd
F3 Vx, Wpd
vevtpd2dq
F2 Vx, Wpd
psliw pslld pslig pmuludq pmaddwd psadbw maskmovq
Pq, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Ng
66 vpsliw vpslid vpsliq vpmuludq vpmaddwd vpsadbw vmaskmovdqu
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vdq, Udq
viddqu
F2 Vx, Mx

Vol.2D A-11

OPCODE MAP

Table A-3. Two-byte Opcode Map: 88H — FFH (First Byte is OFH) *

pfx 8 | 9 | A B | c | D | E | F
s Jecc™4 Jz - Long-displacement jump on condition
s | NS | PIPE | NP/PO | LINGE | NL/GE | LEING | NLE/G
SETcc, Eb - Byte Set on condition
9 S NS P/PE NP/PO L/NGE NL/GE LE/NG NLE/G
A PUSHI6? popdc4 RSM BTS SHRD SHRD (Grp 15'4)1¢ IMUL
GS GS Ev, Gv Ev, Gy, Ib Ev, Gy, CL Gy, Ev
JMPE Grp 10™A Grp 81A BTC BSF BSR MOVSX
(reserved for Invalid Opcode1B Ev, Ib Ev, Gv Gy, Ev Gy, Ev Gv. Eb Gv. E
B emulator on IPF) v, v, EW
F3 POPCNT TZCNT LZCNT
Gy, Ev Gy, Ev Gy, Ev
BSWAP
RAX/EAX/ RCX/ECX/ RDX/EDX/ RBX/EBX/ RSP/ESP/ RBP/EBP/ RSI/ESI/ RDI/EDI/
R8/R8D R9/R9D R10/R10D R11/R11D R12/R12D R13/R13D R14/R14D R15/R15D
C
psubusb psubusw pminub pand paddusb paddusw pmaxub pandn
Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pg, Qq Pg, Qq
66 vpsubusb vpsubusw vpminub vpand vpaddusb vpaddusw vpmaxub vpandn
b Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubsb psubsw pminsw por paddsb paddsw pmaxsw pxor
Pa, Qq Pa, Qq Pg, Qq Pa, Qq Pa, Qq Pg, Qq Pg, Qq Pg, Qq
66 vpsubsb vpsubsw vpminsw vpor vpaddsb vpaddsw vpmaxsw vpxor
£ Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
F3
F2
psubb psubw psubd psubq paddb paddw paddd
Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq Pq, Qq upo
F 66 vpsubb vpsubw vpsubd vpsubq vpaddb vpaddw vpaddd
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx
F2
NOTES:

*

A-12 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-4. Three-byte Opcode Map: 00H — F7H (First Two Bytes are OF 38H) *

OPCODE MAP

pfx 0 1 2 3 4 5 6 7
pshufb phaddw phaddd phaddsw pmaddubsw phsubw phsubd phsubsw
Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq Pa, Qq
0
66 vpshufb vphaddw vphaddd vphaddsw vpmaddubsw vphsubw vphsubd vphsubsw
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
pblendvb vevtph2ps blendvps blendvpd vpermps" vptest
Vdq, Wdq Vx, Wx, Ib Vdq, Wdq Vdq, Wdq Vqq, Hqq, Wqq Vx, Wx
1 66
2 66 vpmovsxbw vpmovsxbd vpmovsxbq vpmovsxwd VPMOVSXW(vpmovsxdq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq
3 66 vpmovzxbw vpmovzxbd vpmovzxbq vpmovzxwd VPMOVZXwWQ vpmovzxdq vpermd” vpecmpgtq
Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mw Vx, Ux/Mq Vx, Ux/Md Vx, Ux/Mq Vqq, Hqq, Wqq Vx, Hx, Wx
4 66 vpmulld vphminposuw vpsrivd/q¥ vpsravd” vpslivd/g¥
Vx, Hx, Wx Vdq, Wdq Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
5
6
7
INVEPT INVVPID INVPCID
8 66 Gy, Mdq Gy, Mdq Gy, Mdq
9 66 vgatherdd/q" vgatherqd/q" vgatherdps/d¥ vgatherqps/d¥ vfmaddsub132ps/d¥ | vfmsubadd132ps/d"
Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx Vx,Hx,Wx
A 66 vfmaddsub213ps/d¥ | vfmsubadd213ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
B 66 vfmaddsub231ps/d¥ | vfmsubadd231ps/d¥
Vx,Hx,Wx Vx,Hx,Wx
C
D
E
MOVBE MOVBE ANDNY BZHIY BEXTRY
Gy, My My, Gy Gy, By, Ey Gy, Ey, By Gy, Ey, By
66 MOVBE MOVBE ADCX SHLXY
Gw, Mw Mw, Gw Gy, By Gy, Ey, By
1A PEXTY ADOX SARXY
LR A Gy, By, By Gy, By Gy, Ey, By
F2 CRC32 CRC32 PDEPY MULXY SHRXY
Gd, Eb Gd, Ey Gy, By, Ey By,Gy,rDX,Ey Gy, Ey, By
66 & CRC32 CRC32
F2 Gd, Eb Gd, Ew

Vol.2D A-13

OPCODE MAP

Table A-4. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 38H) *

pfx 8 9 A B C D E F
psignb psignw psignd pmulhrsw
Pg, Qq Pg, Qq Pg, Qq Pa, Qq
0 vpsignb vpsignw vpsignd vpmulhrsw vpermilps” vpermilpd¥ vtestps’ vtestpd”
66 Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx,Hx,Wx Vx,Hx,Wx Vx, Wx Vx, Wx
1 pabsb pabsw pabsd
Pq, Qq Pg, Qq Pa, Qq
66 vbroadcastss’ | vbroadcastsd' Vqg, vbroadcastf128" Vqq, vpabsb vpabsw vpabsd
Vx, Wd Wq Mdq Vx, Wx Vx, Wx Vx, Wx
2 66 vpmuldq vpcmpeqq vmovntdga vpackusdw vmaskmovps" vmaskmovpd¥ vmaskmovps" vmaskmovpd”
Vx, Hx, Wx Vx, Hx, Wx Vx, Mx Vx, Hx, Wx Vx,Hx,Mx Vx,Hx,Mx Mx,Hx,Vx Mx,Hx,Vx
3 66 vpminsb vpminsd vpminuw vpminud vpmaxsb vpmaxsd vpmaxuw vpmaxud
Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx
4
5 66 vpbroadcastd” vpbroadcastq" vbroadcasti128¥
Vx, Wx Vx, Wx Vqqg, Mdq
6
7 66 vpbroadcastb¥ vpbroadcastw"
Vx, Wx Vx, Wx
vpmaskmovd/q" vpmaskmovd/q¥
8 66 Vx,Hx,Mx Mx,Vx,Hx
9 66 vfmadd132ps/d¥ vfmadd132ss/d’ vfmsub132ps/d’ vfmsub132ss/d" vfnmadd132ps/d” vfnmadd132ss/d¥ vfnmsub132ps/d¥ vinmsub132ss/d"
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
A 66 vfmadd213ps/d” vfmadd213ss/d’ vfmsub213ps/d” vfmsub213ss/d" vfnmadd213ps/d” vfnmadd213ss/d¥ vfnmsub213ps/d¥ vfnmsub213ss/d"
Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
B 66 vfmadd231ps/d” vfmadd231ss/d’ vfmsub231ps/d” vfmsub231ss/d" vfnmadd231ps/d” vfnmadd231ss/d¥ vfnmsub231ps/d¥ vfnmsub231ss/d"
VX, Hx, Wx VX, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx Vx, Hx, Wx VX, Hx, Wx Vx, Hx, Wx VX, Hx, Wx
shalnexte shaimsg1 shaimsg2 sha256rnds2 sha256msg1 sha256msg2
c Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq Vdq,Wdq
66
D 66 VAESIMC VAESENC VAESENCLAST VAESDEC VAESDECLAST
Vdq, Wdq Vdq,Hdq,Wdq Vdg,Hdq,Wdq Vdqg,Hdq,Wdg Vdqg,Hdq,Wdq
E
66
F F3
F2
66 & F2
NOTES:

*

A-14 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-5. Three-byte Opcode Map: 00H — F7H (First two bytes are OF 3AH) *

OPCODE MAP

pfx 0 1 2 3 4 5 6 7
vpermq” vpermpd” vpblendd¥ vpermilps¥ vpermilpd” vperm2f128¥
Vqq, Wqq, Ib Vqq, Wqq, Ib Vx,Hx,Wx,lb Vx, Wx, Ib Vx, Wx, Ib Vqq,Hqq,Waqgq,Ib
0 66
1 66 vpextrb vpextrw vpextrd/q vextractps
Rd/Mb, Vdq, Ib Rd/Mw, Vdq, Ib Ey, Vdq, Ib Ed, Vdq, Ib
2 66 vpinsrb vinsertps vpinsrd/q
Vdq,Hdq,Ry/Mb, Ib |Vdq,Hdq,Udg/Md,Ib| Vdq,Hdg,Ey,lb
3
4 66 vdpps vdppd vmpsadbw vpclmulgdg vperm2i128¥
Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,lb Vx,Hx,Wx,Ib Vdq,Hdq,Wdgq,Ib Vqq,Hqq,Wqgq,Ib
5
6 66 vpcmpestrm vpcmpestri vpcmpistrm vpcmpistri
Vdq, Wdq, Ib Vdq, Wdq, Ib Vdq, Wdq, Ib Vdq, Wdq, Ib
7
8
9
A
B
C
D
E
F RORXY
P2l opepw

Vol.2D A-15

OPCODE MAP

Table A-5. Three-byte Opcode Map: 08H — FFH (First Two Bytes are OF 3AH) *

pfx 8 9 A B C D E F
palignr
0 Pq, Qq, Ib
66 vroundps vroundpd vroundss vroundsd vblendps vblendpd vpblendw vpalignr
Vx,Wx,|b Vx,Wx,Ib Vss,Wss,Ib Vsd,Wsd,Ib Vx,Hx,Wx,lb Vx,Hx,Wx, b Vx,Hx,Wx,lb Vx,Hx,Wx, b
vinsertf128¥ vextractf128¥ vevtps2phY
1 | 66 | Vaq,Hqq,Wqq,Ib Wdg,Vqa,Ib Wx, Vx, Ib
2
3 | 66 vinserti128¥ vextracti128¥
Vqq,Hqq,Wqgq,Ib Wdq,Vqq,Ib
4 | 66 vblendvps¥ vblendvpd¥ vpblendvbY
Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx Vx,Hx,Wx,Lx
5
6
7
8
9
A
B
c shalrnds4
Vdq,Wdg,lb
o [e
E
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-16 Vol.2D

OPCODE MAP

A.4 OPCODE EXTENSIONS FOR ONE-BYTE AND TWO-BYTE OPCODES

Some 1-byte and 2-byte opcodes use bits 3-5 of the ModR/M byte (the nnn field in Figure A-1) as an extension of
the opcode.

mod | nnn ‘ R/M

Figure A-1. ModR/M Byte nnn Field (Bits 5, 4, and 3)

Opcodes that have opcode extensions are indicated in Table A-6 and organized by group number. Group numbers
(from 1 to 16, second column) provide a table entry point. The encoding for the r/m field for each instruction can
be established using the third column of the table.

A4.1 Opcode Look-up Examples Using Opcode Extensions

An Example is provided below.

Example A-4. Interpreting an ADD Instruction
An ADD instruction with a 1-byte opcode of 80H is a Group 1 instruction:
®* Table A-6 indicates that the opcode extension field encoded in the ModR/M byte for this instruction is 000B.

®* The r/m field can be encoded to access a register (11B) or a memory address using a specified addressing
mode (for example: mem = 00B, 01B, 10B).

Example A-5. Looking Up OF01C3H

Look up opcode OF01C3 for a VMRESUME instruction by using Table A-2, Table A-3 and Table A-6:
® OF tells us that this instruction is in the 2-byte opcode map.

® 01 (row 0, column 1 in Table A-3) reveals that this opcode is in Group 7 of Table A-6.

®* (C3isthe ModR/M byte. The first two bits of C3 are 11B. This tells us to look at the second of the Group 7 rows
in Table A-6.

® The Op/Reg bits [5,4,3] are 000B. This tells us to look in the 000 column for Group 7.
®* Finally, the R/M bits [2,1,0] are 011B. This identifies the opcode as the VMRESUME instruction.

A4.2 Opcode Extension Tables
See Table A-6 below.

Vol.2D A-17

OPCODE MAP

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number *

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

Opcode Group | Mod 76 | pfx 000 001 010 011 100 101 110 111
80-83 1 mem, 11B ADD OR ADC SBB AND SuB XOR CMP
8F 1A mem, 11B POP
C0,C1 reg, imm mem, 11B ROL ROR RCL RCR SHL/SAL SHR SAR
DO, D1 reg, 1 2
D2, D3 reg, CL
F6. F7 3 mem, 11B TEST NOT NEG MUL IMUL DIV IDIV
! Ib/1z AL/rAX AL/rAX AL/rAX AL/rAX
mem, 11B INC DEC
FE 4 Eb Eb
FF g mem, 11B INC DEC near CALL* far CALL near JMP4 | far JMP PUSHd64
Ev Ev Ev Ep Ev Mp Ev
OF 00 6 mem, 11B SLDT STR LLDT LTR VERR VERW
Rv/Mw Rv/Mw Ew Ew Ew Ew
mem SGDT SIDT LGDT LIDT SMSW LMSW INVLPG
Ms Ms Ms Ms Mw/Rv Ew Mb
1B VMCALL (001)| MONITOR [XGETBV (000) SWAPGS
VMLAUNCH (000) XSETBV (001) °64(000)
OF 01 7 (010) MWAIT (001) |\ 1 o RDTSCP (001)
VMRESUME | CLAC (010) (100)
(011) VMXOFF| STAC (011) | xeND (101)
(100) ENCLS (111) | XTEST (110)
ENCLU(111)
OF BA 8 mem, 11B BT BTS BTR BTC
CMPXCH8B Mq VMPTRLD VMPTRST
CMPXCHG16B Mq Mq
Mdq
mem 66 VMCLEAR
Mgq
OF C7 9 F3 VMXON
Mgq
RDRAND RDSEED
Rv Rv
11B
F3 RDPID
Rd/q
mem uD1
OF B9 10
11B
mem MOV
cé 1B Eb, Ib XABORT (000) I
1
o7 mem MOV
1B Bv. Iz XBEGIN (000) Jz
mem
psriw psraw psllw
OF 71 12 "B Ng, Ib Ng, Ib Ng, Ib
66 vpsriw vpsraw vpsliw
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib
mem
psrid psrad pslid
OF 72 13 . Ng, Ib Ng, Ib Ng, Ib
66 vpsrid vpsrad vpslid
Hx,Ux,lb Hx,Ux,Ib Hx,Ux,Ib
mem
psriq psliq
OF 73 14 . Ng, Ib Ng, Ib
66 vpsriq vpsridq vpsllq vpslldg
Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib Hx,Ux,Ib

A-18 Vol.2D

Table A-6. Opcode Extensions for One- and Two-byte Opcodes by Group Number * (Contd.)

OPCODE MAP

Encoding of Bits 5,4,3 of the ModR/M Byte (bits 2,1,0 in parenthesis)

Opcode Group | Mod 7,6 | pfx 000 001 010 011 100 101 110 111
mem fxsave fxrstor ldmxcsr stmxcsr XSAVE XRSTOR | XSAVEOPT clflush

OF AE 15 Ifence mfence sfence

F3 RDFSBASE | RDGSBASE | WRFSBASE | WRGSBASE
11B Ry Ry Ry Ry
prefetch prefetch prefetch prefetch Reserved NOP

mem NTA TO T1 T2

OF 18 16
1B Reserved NOP
mem BLSRY BLSMSKY BLSIY

VEX.OF38 F3 17 1B By, Ey By, Ey By, Ey
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-19

OPCODE MAP

A.5 ESCAPE OPCODE INSTRUCTIONS

Opcode maps for coprocessor escape instruction opcodes (x87 floating-point instruction opcodes) are in Table A-7
through Table A-22. These maps are grouped by the first byte of the opcode, from D8-DF. Each of these opcodes
has a ModR/M byte. If the ModR/M byte is within the range of 00H-BFH, bits 3-5 of the ModR/M byte are used as
an opcode extension, similar to the technique used for 1-and 2-byte opcodes (see A.4). If the ModR/M byte is
outside the range of 00H through BFH, the entire ModR/M byte is used as an opcode extension.

A.5.1 Opcode Look-up Examples for Escape Instruction Opcodes

Examples are provided below.

Example A-6. Opcode with ModR/M Byte in the O00H through BFH Range
DD0504000000H can be interpreted as follows:

®* The instruction encoded with this opcode can be located in Section . Since the ModR/M byte (05H) is within the
00H through BFH range, bits 3 through 5 (000) of this byte indicate the opcode for an FLD double-real
instruction (see Table A-9).

® The double-real value to be loaded is at 00000004H (the 32-bit displacement that follows and belongs to this
opcode).

Example A-7. Opcode with ModR/M Byte outside the 00H through BFH Range
D8C1H can be interpreted as follows:

®* This example illustrates an opcode with a ModR/M byte outside the range of 00H through BFH. The instruction
can be located in Section A.4.

®* In Table A-8, the ModR/M byte C1H indicates row C, column 1 (the FADD instruction using ST(0), ST(1) as
operands).

A5.2 Escape Opcode Instruction Tables

Tables are listed below.

A.5.2.1 Escape Opcodes with D8 as First Byte

Table A-7 and A-8 contain maps for the escape instruction opcodes that begin with D8H. Table A-7 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-7. D8 Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte (refer to Figure A.4)

000B 001B 010B 011B 100B 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
single-real single-real single-real single-real single-real single-real single-real single-real
NOTES:

*

A-20 Vol.2D

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

OPCODE MAP

Table A-8 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects the
table row and the second digit selects the column.

Table A-8. D8 Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 | 1 | 2 \ 3 \ 4 \ 5 \ 6 \ 7

c FADD

sT(0)ST(0) | STO).ST() | ST0)ST@ | ST0).STE) | STO).STW) | ST(0)ST(E) | ST(O)STE) | STO)ST(D)
D FCOM

sT0)sT(0) | STO).ST() | sT0).T@) | sT0).8T3) | sT0).ST@) | ST(0)STEB) | STO)STE) | ST(0)ST(D)
E FSUB

sT(0)ST(0) | STO)ST() | sTO)ST@ | ST0).STE) | STO).STW) | ST(0)STB) | ST(O)STE) | STO)ST(D)
F FDIV

sT0)sT0) | st).s1(1) | st0).51@ | sT0).s13) | sT0)sT@4) | ST0).8T65) | sT0)sT6) | ST(0).5T(D)

8 | 9 | A \ B \ c \ D \ E \ F

c FMUL

sT(0)ST(0) | STO).ST() | sT0)ST@ | STO0).STE) | STO).STW) | ST(0)STE) | ST(O)STE) | STO)ST(D)
D FCOMP

sT0)sT(0) | STO).ST() | sT0).T@) | sT0).8T3) | sT0)ST@) | ST(0)STB) | STO)STE) | STO)ST(D)
E FSUBR

sT(0)ST(0) | STO)ST() | sT0)ST@ | ST0)STE) | STO).STW) | ST(0)ST(EB) | ST(O)STE) | STO)ST(D)
F FDIVR

sT0)s10) | st).s1(1) | st0).512 | sT0).s13) | st0)sT@4) | sT0).8T65) | sT)sT6) | ST(0).ST(D)

NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.2 Escape Opcodes with D9 as First Byte

Table A-9 and A-10 contain maps for escape instruction opcodes that begin with D9H. Table A-9 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-9. D9 Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FST FSTP FLDENV FLDCW FSTENV FSTCW
single-real single-real single-real 14/28 bytes 2 bytes 14/28 bytes 2 bytes
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-21

OPCODE MAP

Table A-10 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-10. D9 Opcode Map When ModR/M Byte is Outside O0H to BFH *
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
C FLD

ST(0),ST(0) ST(0),ST(1) ST(0),ST(2) ST(0),ST(3) ST(0),ST(4) ST(0),ST(5) ST(0),ST(6) ST(0),ST(7)

D FNOP

E FCHS FABS FTST FXAM
F F2XM1 FYL2X FPTAN FPATAN FXTRACT FPREM1 FDECSTP FINCSTP
8 | 9 | A | B | c | D | E | F

C FXCH

ST(0),ST(0) | ST(0),ST(1) | ST(0),ST(2) | ST(0),ST(3) | ST(0),ST(4) | ST(0),ST(5) | ST(0),ST(6) | ST(0),ST(7)
D
E FLD1 FLDL2T FLDL2E FLDPI FLDLG2 FLDLN2 FLDZ
F FPREM FYL2XP1 FSQRT FSINCOS FRNDINT FSCALE FSIN FCOS
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.23 Escape Opcodes with DA as First Byte

Table A-11 and A-12 contain maps for escape instruction opcodes that begin with DAH. Table A-11 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-11. DA Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte
000B 001B 010B 011B 100B 101B 110B 111B
FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer dword-integer
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-22 Vol.2D

OPCODE MAP

Table A-12 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-12. DA Opcode Map When ModR/M Byte is Outside OOH to BFH *

0 \ 1 \ 2 \ 3 \ 4 | 5 \ 6 \ 7
c FCMOVB
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(@) | ST(0)STE) | ST()ST@) | STO).ST() | ST(O).STE6) | ST()ST()
D FCMOVBE
ST(0),ST(0) | ST(0)ST(1) | ST(0).ST@2) | ST(0)ST(3) | ST(O)ST@) | ST(O),ST() | ST(O).STE) | STO)ST()
E
F
8 \ 9 \ A \ B \ C | D \ E \ F
c FCMOVE
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(@) | ST(0)ST@) | ST()ST@) | STO).ST() | ST(O).STE6) | ST()ST()
D FCMOVU
ST(0),ST(0) | ST(0)ST(1) | ST(0).ST@) | ST(0)ST(3) | ST(O)ST@) | ST(0),ST() | ST().STE) | STO)ST()
E FUCOMPP
F
NOTES:

*

A5.2.4

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Escape Opcodes with DB as First Byte

Table A-13 and A-14 contain maps for escape instruction opcodes that begin with DBH. Table A-13 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-13. DB Opcode Map When ModR/M Byte is Within O0H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FILD FISTTP FIST FISTP FLD FSTP
dword-integer dword-integer dword-integer dword-integer extended-real extended-real
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-23

OPCODE MAP

Table A-14 shows the map if the ModR/M byte is outside the range of 00H-BFH. Here, the first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-14. DB Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 | 1 \ 2 | 3 | 4 \ 5 \ 6 \ 7
c FCMOVNB
ST(0)ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STW) | ST(O)STE) | STO).STE) | STO)ST()
D FCMOVNBE
ST(0),ST(0) | ST(0)ST(1) | ST(0).ST) | ST(O)STE) | ST(0).STM) | ST(O)ST(BG) | ST(0).ST6) | ST(0).T(7)
E FCLEX FINIT
F FCOMI
ST(0)ST(0) | sT(0)ST(1) | STO).STE) | ST(0)STE) | ST(O).ST®) | ST(0)ST(5) | ST(O).ST(E) | ST(O).ST()
8 | 9 \ A | B | c \ D \ E \ F
C FCMOVNE
ST(0)ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STW) | STO)STE) | STO).STE) | STO)ST()
D FCMOVNU
ST(0).ST(0) | ST(0)ST(1) | ST(0)ST(2) | ST(0).ST() | ST(0)STM) | ST(O)STE) | STO).STE) | STO)ST()
E FUCOMI
ST(0),ST(0) | ST(0)ST(1) | ST(0).ST) | ST(O)STE) | ST(0).STM) | ST(O)ST(BG) | ST(0).ST6) | ST(0).ST(7)
F
NOTES:

* All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.25 Escape Opcodes with DC as First Byte

Table A-15 and A-16 contain maps for escape instruction opcodes that begin with DCH. Table A-15 shows the map if the ModR/M
byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-15. DC Opcode Map When ModR/M Byte is Within OOH to BFH *

nnn Field of ModR/M Byte (refer to Figure A-1)
000B 001B 010B 011B 100B 101B 110B 111B
FADD FMUL FCOM FCOMP FSUB FSUBR FDIV FDIVR
double-real double-real double-real double-real double-real double-real double-real double-real
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-24 Vol.2D

OPCODE MAP

Table A-16 shows the map if the ModR/M byte is outside the range of 00H-BFH. In this case the first digit of the ModR/M byte
selects the table row and the second digit selects the column.

Table A-16. DC Opcode Map When ModR/M Byte is Outside O0H to BFH *

\ 1 \ 2 \ 3 \ 4 \ 5 | 6 7
c FADD
ST(0)ST(0) | ST()ST(O) | ST@.STO) | ST@).STO) | STM).ST(O) | ST(5)ST(O) | STE)STO) | ST().ST(O)
D
| | | | | |
E FSUBR
ST(0)ST(0) | ST()ST(O) | ST@.STO) | ST@3).STO) | STM).ST(O) | ST(5)ST(O) | STE)STO) | ST().ST(O)
F FDIVR
ST(0)ST(0) | sT(1)sT(0) | ST@).8T(0) | STE)STO) | STM).STIO) | ST(E)ST(O) | STB)STIO) | ST(7).ST(O)
\ 9 \ A \ B \ C \ D | E F
c FMUL
ST(0)ST(0) | ST()ST(0) | ST@)ST(O) | STA)STO) | STW).STO) | ST().ST(O) | STE).ST(O) | ST(7)ST(O)
D
| | | | | |
E FSUB
ST(0)ST(0) | ST()ST(O) | ST@)ST(O) | STA)STO) | STW).STO) | ST().ST(O) | STE).ST(O) | ST(7)ST(O)
F FDIV
ST(0)ST(0) | ST()ST(O) | ST@),ST(0) | STE3)STO) | STA).ST(O) | ST()STO) | STE).ST(O) | ST(7).ST(0)
NOTES:

*

A.5.2.6

Escape Opcodes with DD as First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-17 and A-18 contain maps for escape instruction opcodes that begin with DDH. Table A-17 shows the map if the ModR/M

byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-17. DD Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FLD FISTTP FST FSTP FRSTOR FSAVE FSTSW
double-real integer64 double-real double-real 98/108bytes 98/108bytes 2 bytes
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-25

OPCODE MAP

Table A-18 shows the map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects the table
row and the second digit selects the column.

Table A-18. DD Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 \ 1 \ 2 \ 3 \ 4 \ 5 | 6 7
C FFREE
st) | sty | st | st® | stw | s1e) | ST ST(7)
D FST
st) | sty | st | st® | stw | ste) | s1e) | sT()
E FUCOM
ST(0),ST(0) | ST(1)ST(0) | ST(2).8T(0) | ST(3)STO) | ST@)STE) | ST(5).8T(O) | STE)STO) | ST(7).ST(O)
=
8 \ 9 \ A \ B \ c \ D | E \ F
c
| | | | | | |
D FSTP
st) | sty | st | st® | stw | ste) | s1e) | sT()
E FUCOMP
ST(0) ST(1) ST() ST(3) ST(4) ST(5) ST(6) ST(7)
=
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A5.2.7 Escape Opcodes with DE as First Byte

Table A-19 and A-20 contain opcode maps for escape instruction opcodes that begin with DEH. Table A-19 shows the opcode map
if the ModR/M byte is in the range of 00H-BFH. In this case, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruc-
tion.

Table A-19. DE Opcode Map When ModR/M Byte is Within OOH to BFH *
nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FIADD FIMUL FICOM FICOMP FISUB FISUBR FIDIV FIDIVR
word-integer word-integer word-integer word-integer word-integer word-integer word-integer word-integer
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-26 Vol.2D

OPCODE MAP

Table A-20 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-20. DE Opcode Map When ModR/M Byte is Outside O0H to BFH *

0 \ 1 | 2 | 3 \ 4 \ 5 \ 6 7
C FADDP
ST(0)ST(0) | ST(1)ST(O) | ST@.ST() | STE)STO) | STM)STO) | STE).STO) | STE).STO) | ST(M)ST(O)
D
E | | | FSULRP | |
ST(0)ST(0) | ST(1)ST(O) | ST@.ST() | STE)STO) | STM)STO) | STE).STO) | STE).STO) | ST(M)ST(O)
F FDIVRP
sT(0)8T(0) | sT(1)sT0) | ST2).5T(0) | STE)ST(O) | STW)ST(O) | STB).ST(O) | ST(6)ST(O) | ST(7)ST(0)
8 \ 9 | A | B \ c \ D \ E F
C FMULP
ST(0),ST(0) | ST(1).ST(0) | ST(2).8T(O) | ST(3).8T(O) | ST@).STO) | ST(5)STO) | STE).STO) | ST(7)STO)
D FCOMPP
E FSUBP
ST(0)ST(0) | ST(1)ST(O) | ST@.ST() | STE)STO) | STM)STO) | STE).STO) | STE).STO) | ST()ST(O)
F FDIVP
ST(0)8T(0) | sT(1)sT(0) | sT2).5T(0). | STE)ST(O) | STW)ST(O) | STG)ST(O) | ST(6)ST(O) | ST(7)ST(O)
NOTES:

*

A.5.2.8

Escape Opcodes with DF As First Byte

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Table A-21 and A-22 contain the opcode maps for escape instruction opcodes that begin with DFH. Table A-21 shows the opcode
map if the ModR/M byte is in the range of 00H-BFH. Here, the value of bits 3-5 (the nnn field in Figure A-1) selects the instruction.

Table A-21. DF Opcode Map When ModR/M Byte is Within 00H to BFH *

nnn Field of ModR/M Byte

000B 001B 010B 011B 100B 101B 110B 111B
FILD FISTTP FIST FISTP FBLD FILD FBSTP FISTP
word-integer word-integer word-integer word-integer packed-BCD qword-integer packed-BCD gword-integer
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

Vol.2D A-27

OPCODE MAP

Table A-22 shows the opcode map if the ModR/M byte is outside the range of 00H-BFH. The first digit of the ModR/M byte selects
the table row and the second digit selects the column.

Table A-22. DF Opcode Map When ModR/M Byte is Outside 00H to BFH "

0 \ 1 | 2 \ 3 \ 4 \ 5 \ 6 | 7
c
| | | | | | |
D
E FSTSW
AX
F FCOMIP
ST(0)ST(0) | ST(0)sT(1) | sT)ST@) | ST(0).5T3) | STO).ST@) | ST(O)ST(5) | ST(O)STE) | ST(0)ST(7)
8 \ 9 | A \ B \ c \ D \ E | F
c
| | | | | | |
D
| | | | | | |
E FUCOMIP
ST(0),ST(0) | ST(0),ST(1) | ST(O)ST(2) | ST(O)ST@) | ST(O)ST®) | ST(O)ST(E) | ST(O).STE) | ST(0)ST(7)
F
NOTES:

*

All blanks in all opcode maps are reserved and must not be used. Do not depend on the operation of undefined or reserved locations.

A-28 Vol.2D

OPCODE MAP

Vol.2D A-29

OPCODE MAP

A-30 Vol.2D

7. Updates to Chapter 2, Volume 3A

Change bars show changes to Chapter 2 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

Change to this chapter: Update to Section 2.1.4 “Interrupt and Exception Handling”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 9

CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

IA-32 architecture (beginning with the Intel386 processor family) provides extensive support for operating-system
and system-development software. This support offers multiple modes of operation, which include:

®* Real mode, protected mode, virtual 8086 mode, and system management mode. These are sometimes
referred to as legacy modes.

Intel 64 architecture supports almost all the system programming facilities available in IA-32 architecture and
extends them to a new operating mode (IA-32e mode) that supports a 64-bit programming environment. IA-32e
mode allows software to operate in one of two sub-modes:

® 64-bit mode supports 64-bit OS and 64-bit applications

®* Compatibility mode allows most legacy software to run; it co-exists with 64-bit applications under a 64-bit OS.
The IA-32 system-level architecture includes features to assist in the following operations:
® Memory management

®* Protection of software modules

® Multitasking

®* Exception and interrupt handling

® Multiprocessing

®* Cache management

® Hardware resource and power management

®* Debugging and performance monitoring

This chapter provides a description of each part of this architecture. It also describes the system registers that are
used to set up and control the processor at the system level and gives a brief overview of the processor’s system-
level (operating system) instructions.

Many features of the system-level architecture are used only by system programmers. However, application
programmers may need to read this chapter and the following chapters in order to create a reliable and secure
environment for application programs.

This overview and most subsequent chapters of this book focus on protected-mode operation of the IA-32 architec-
ture. IA-32e mode operation of the Intel 64 architecture, as it differs from protected mode operation, is also
described.

All Intel 64 and IA-32 processors enter real-address mode following a power-up or reset (see Chapter 9, “Processor
Management and Initialization”). Software then initiates the switch from real-address mode to protected mode. If
IA-32e mode operation is desired, software also initiates a switch from protected mode to IA-32e mode.

2.1 OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

System-level architecture consists of a set of registers, data structures, and instructions designed to support basic
system-level operations such as memory management, interrupt and exception handling, task management, and
control of multiple processors.

Figure 2-1 provides a summary of system registers and data structures that applies to 32-bit modes. System regis-
ters and data structures that apply to IA-32e mode are shown in Figure 2-2.

Vol. 3A 2-1

SYSTEM ARCHITECTURE OVERVIEW

EFLAGS Register

Control Registers

CR4
CR3
CR2
CR1
CRO

Task Register

Y

Physical Address
>

Code, Data or
Stack Segment

Linear Address
—_—>

Task-State
_ng_m_erlSelector >Segmer]t_(TS§)) Task
i [~ — 1 Code
~ T hGode]
Global Descriptor Stack
Table (GDT)

[Segment Sel.} - »| Seg. Desc. |— Irgerrupt Handler
| Code |
Current- — »
Interrupt TSS Seg. Sel.; — »| TSS Desc. TSS L Stack
Vector)
- - - - > Seg. Desc.
Interrupt Descriptor | 4 Task-State
Table (IDT) | . _ 3! TSS Desc. Segment _(T_S§)) Task
b - = Code
Interrupt Gatet — — = | LDT Desc. — - " P Data
| - - |: >
Task Gate |- - - - - Stack
GDTR
> Trap Gate [- -~ .
‘ Local Descriptor Exception Handler
b Table (LDT) “T Code |
| Current- — > Stack
IDTR Call-Gate -»| Seg. Desc. TSS |_
Segment Selector
| - > CallGate | |- - N Protected Procedure
XCRO (XFEM) [;:LDTR < Current- — 22008
TSS Stack
L
Linear Address Space Linear Address
J—>l Dir | Table Offset |
Linear Addr. Page Directory Page Table Page
Physical Addr.
Pg. Dir. Entry Pg. Tbl. Entry
> —|—> —|—>
0 This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

*Physical Address

Figure 2-1. IA-32 System-Level Registers and Data Structures

2-2 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

RFLAGS
i —>
EWS_'C? I}Address Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 il >
CR2
CR1
CRO)
Global D t
Task Register OTa?)Ie ?ng-llP) or
[Segment Sel. | - »| Seg. Desc. — Irgelrrupt Handler
NULL - — »S0de]
Interrupt TR } — »| TSS Desc. L Stack
Vector
. - — - - > Seg. Desc.
Interrupt Descriptor |
Table (IDT) I — — »| Seg.Desc. | Interr. Handler
h Code
Interrupt Gate | — — | LDT Desc. - Current TSS
[’—V
Stack
Interrupt Gate | - - -
= GDTR IST—
“»| Trap Gate |- -~
! Local Descriptor Exception Handler
! >
L Table (LDT) NULL [Code |
! Stack
IDTR Cal-Gate -3| Seg. Desc. | |
Segment Selector
| - > CallGate ||~ - N Protected Procedure
XCRO (XFEM) TBTR < NULL - — ;Code

|_ Stack

Linear Address Space Linear Address
J—>l PML4 [Dir. Pointer | Directory [Table [Offset |
Linear Addr.
PML4 Pg. Dir. Ptr.| Page Dir. Page Table Page

Physical

PMLA4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>

0 This page mapping example is for 4-KByte pages
and 40-bit physical address size.

*Physical Address

Figure 2-2. System-Level Registers and Data Structures in IA-32e Mode

2.1.1 Global and Local Descriptor Tables

When operating in protected mode, all memory accesses pass through either the global descriptor table (GDT) or
an optional local descriptor table (LDT) as shown in Figure 2-1. These tables contain entries called segment

descriptors. Segment descriptors provide the base address of segments well as access rights, type, and usage
information.

Vol. 3A 2-3

SYSTEM ARCHITECTURE OVERVIEW

Each segment descriptor has an associated segment selector. A segment selector provides the software that uses
it with an index into the GDT or LDT (the offset of its associated segment descriptor), a global/local flag (deter-
mines whether the selector points to the GDT or the LDT), and access rights information.

To access a byte in a segment, a segment selector and an offset must be supplied. The segment selector provides
access to the segment descriptor for the segment (in the GDT or LDT). From the segment descriptor, the processor
obtains the base address of the segment in the linear address space. The offset then provides the location of the
byte relative to the base address. This mechanism can be used to access any valid code, data, or stack segment,
provided the segment is accessible from the current privilege level (CPL) at which the processor is operating. The
CPL is defined as the protection level of the currently executing code segment.

See Figure 2-1. The solid arrows in the figure indicate a linear address, dashed lines indicate a segment selector,
and the dotted arrows indicate a physical address. For simplicity, many of the segment selectors are shown as
direct pointers to a segment. However, the actual path from a segment selector to its associated segment is always
through a GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear address of the LDT is
contained in the LDT register (LDTR).

2.1.1.1 Global and Local Descriptor Tables in IA-32e Mode

GDTR and LDTR registers are expanded to 64-bits wide in both IA-32e sub-modes (64-bit mode and compatibility
mode). For more information: see Section 3.5.2, “"Segment Descriptor Tables in IA-32e Mode.”

Global and local descriptor tables are expanded in 64-bit mode to support 64-bit base addresses, (16-byte LDT
descriptors hold a 64-bit base address and various attributes). In compatibility mode, descriptors are not
expanded.

2.1.2 System Segments, Segment Descriptors, and Gates

Besides code, data, and stack segments that make up the execution environment of a program or procedure, the
architecture defines two system segments: the task-state segment (TSS) and the LDT. The GDT is not considered
a segment because it is not accessed by means of a segment selector and segment descriptor. TSSs and LDTs have
segment descriptors defined for them.

The architecture also defines a set of special descriptors called gates (call gates, interrupt gates, trap gates, and
task gates). These provide protected gateways to system procedures and handlers that may operate at a different
privilege level than application programs and most procedures. For example, a CALL to a call gate can provide
access to a procedure in a code segment that is at the same or a numerically lower privilege level (more privileged)
than the current code segment. To access a procedure through a call gate, the calling procedure! supplies the
selector for the call gate. The processor then performs an access rights check on the call gate, comparing the CPL
with the privilege level of the call gate and the destination code segment pointed to by the call gate.

If access to the destination code segment is allowed, the processor gets the segment selector for the destination
code segment and an offset into that code segment from the call gate. If the call requires a change in privilege
level, the processor also switches to the stack for the targeted privilege level. The segment selector for the new
stack is obtained from the TSS for the currently running task. Gates also facilitate transitions between 16-bit and
32-bit code segments, and vice versa.

2.1.2.1 Gates in IA-32e Mode

In IA-32e mode, the following descriptors are 16-byte descriptors (expanded to allow a 64-bit base): LDT descrip-
tors, 64-bit TSSs, call gates, interrupt gates, and trap gates.

Call gates facilitate transitions between 64-bit mode and compatibility mode. Task gates are not supported in IA-
32e mode. On privilege level changes, stack segment selectors are not read from the TSS. Instead, they are set to
NULL.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of code (such as a program, pro-
cedure, function, or routine).

2-4 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

2.1.3 Task-State Segments and Task Gates

The TSS (see Figure 2-1) defines the state of the execution environment for a task. It includes the state of general-
purpose registers, segment registers, the EFLAGS register, the EIP register, and segment selectors with stack
pointers for three stack segments (one stack for each privilege level). The TSS also includes the segment selector
for the LDT associated with the task and the base address of the paging-structure hierarchy.

All program execution in protected mode happens within the context of a task (called the current task). The
segment selector for the TSS for the current task is stored in the task register. The simplest method for switching
to a task is to make a call or jump to the new task. Here, the segment selector for the TSS of the new task is given
in the CALL or JMP instruction. In switching tasks, the processor performs the following actions:

Stores the state of the current task in the current TSS.

2. Loads the task register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4. Loads the state of the new task from the new TSS into the general-purpose registers, the segment registers,

the LDTR, control register CR3 (base address of the paging-structure hierarchy), the EFLAGS register, and the
EIP register.

5. Begins execution of the new task.

A task can also be accessed through a task gate. A task gate is similar to a call gate, except that it provides access
(through a segment selector) to a TSS rather than a code segment.

2.1.3.1 Task-State Segments in IA-32e Mode

Hardware task switches are not supported in IA-32e mode. However, TSSs continue to exist. The base address of
a TSS is specified by its descriptor.

A 64-bit TSS holds the following information that is important to 64-bit operation:
® Stack pointer addresses for each privilege level

®* Pointer addresses for the interrupt stack table

* Offset address of the I0-permission bitmap (from the TSS base)

The task register is expanded to hold 64-bit base addresses in IA-32e mode. See also: Section 7.7, “Task Manage-
ment in 64-bit Mode.”

2.1.4 Interrupt and Exception Handling

External interrupts, software interrupts and exceptions are handled through the interrupt descriptor table (IDT).
The IDT stores a collection of gate descriptors that provide access to interrupt and exception handlers. Like the
GDT, the IDT is not a segment. The linear address for the base of the IDT is contained in the IDT register (IDTR).

Gate descriptors in the IDT can be interrupt, trap, or task gate descriptors. To access an interrupt or exception
handler, the processor first receives an interrupt vector from internal hardware, an external interrupt controller, or
from software by means of an INT n, INTO, INT3, INT1, or BOUND instruction. The interrupt vector provides an
index into the IDT. If the selected gate descriptor is an interrupt gate or a trap gate, the associated handler proce-
dure is accessed in a manner similar to calling a procedure through a call gate. If the descriptor is a task gate, the
handler is accessed through a task switch.

2.1.4.1 Interrupt and Exception Handling IA-32e Mode

In IA-32e mode, interrupt gate descriptors are expanded to 16 bytes to support 64-bit base addresses. This is true
for 64-bit mode and compatibility mode.

The IDTR register is expanded to hold a 64-bit base address. Task gates are not supported.

Vol. 3A 2-5

SYSTEM ARCHITECTURE OVERVIEW

2.1.5 Memory Management

System architecture supports either direct physical addressing of memory or virtual memory (through paging).
When physical addressing is used, a linear address is treated as a physical address. When paging is used: all code,
data, stack, and system segments (including the GDT and IDT) can be paged with only the most recently accessed
pages being held in physical memory.

The location of pages (sometimes called page frames) in physical memory is contained in the paging structures.
These structures reside in physical memory (see Figure 2-1 for the case of 32-bit paging).

The base physical address of the paging-structure hierarchy is contained in control register CR3. The entries in the
paging structures determine the physical address of the base of a page frame, access rights and memory manage-
ment information.

To use this paging mechanism, a linear address is broken into parts. The parts provide separate offsets into the
paging structures and the page frame. A system can have a single hierarchy of paging structures or several. For
example, each task can have its own hierarchy.

2.1.5.1 Memory Management in IA-32e Mode

In IA-32e mode, physical memory pages are managed by a set of system data structures. In compatibility mode
and 64-bit mode, four levels of system data structures are used. These include:

®* The page map level 4 (PML4) — An entry in a PML4 table contains the physical address of the base of a page
directory pointer table, access rights, and memory management information. The base physical address of the
PML4 is stored in CR3.

®* A set of page directory pointer tables — An entry in a page directory pointer table contains the physical
address of the base of a page directory table, access rights, and memory management information.

®* Sets of page directories — An entry in a page directory table contains the physical address of the base of a
page table, access rights, and memory management information.

®* Sets of page tables — An entry in a page table contains the physical address of a page frame, access rights,
and memory management information.

2.1.6 System Registers

To assist in initializing the processor and controlling system operations, the system architecture provides system
flags in the EFLAGS register and several system registers:

®* The system flags and IOPL field in the EFLAGS register control task and mode switching, interrupt handling,
instruction tracing, and access rights. See also: Section 2.3, “"System Flags and Fields in the EFLAGS Register.”

®* The control registers (CR0O, CR2, CR3, and CR4) contain a variety of flags and data fields for controlling system-
level operations. Other flags in these registers are used to indicate support for specific processor capabilities
within the operating system or executive. See also: Section 2.5, “Control Registers” and Section 2.6, “Extended
Control Registers (Including XCRO0).”

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in debugging programs
and systems software. See also: Chapter 17, "Debug, Branch Profile, TSC, and Intel® Resource Director
Technology (Intel® RDT) Features.”

®* The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of their respective tables.
See also: Section 2.4, "Memory-Management Registers.”

® The task register contains the linear address and size of the TSS for the current task. See also: Section 2.4,
“Memory-Management Registers.”

®* Model-specific registers (not shown in Figure 2-1).

The model-specific registers (MSRs) are a group of registers available primarily to operating-system or executive
procedures (that is, code running at privilege level 0). These registers control items such as the debug extensions,
the performance-monitoring counters, the machine- check architecture, and the memory type ranges (MTRRs).

2-6 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

The number and function of these registers varies among different members of the Intel 64 and IA-32 processor
families. See also: Section 9.4, “"Model-Specific Registers (MSRs),” and Chapter 2, "Model-Specific Registers
(MSRs)” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 4.

Most systems restrict access to system registers (other than the EFLAGS register) by application programs.
Systems can be designed, however, where all programs and procedures run at the most privileged level (privilege
level 0). In such a case, application programs would be allowed to modify the system registers.

2.1.6.1 System Registers in IA-32e Mode

In IA-32e mode, the four system-descriptor-table registers (GDTR, IDTR, LDTR, and TR) are expanded in hardware
to hold 64-bit base addresses. EFLAGS becomes the 64-bit RFLAGS register. CRO-CR4 are expanded to 64 bits.
CR8 becomes available. CR8 provides read-write access to the task priority register (TPR) so that the operating
system can control the priority classes of external interrupts.

In 64-bit mode, debug registers DRO-DR7 are 64 bits. In compatibility mode, address-matching in DRO-DR3 is
also done at 64-bit granularity.

On systems that support IA-32e mode, the extended feature enable register (IA32_EFER) is available. This model-
specific register controls activation of IA-32e mode and other IA-32e mode operations. In addition, there are
several model-specific registers that govern IA-32e mode instructions:

® 1A32_KERNEL_GS BASE — Used by SWAPGS instruction.
® 1A32_LSTAR — Used by SYSCALL instruction.

®* 1A32_FMASK — Used by SYSCALL instruction.

® 1A32_STAR — Used by SYSCALL and SYSRET instruction.

2.1.7 Other System Resources

Besides the system registers and data structures described in the previous sections, system architecture provides
the following additional resources:

® Operating system instructions (see also: Section 2.8, "System Instruction Summary”).
®* Performance-monitoring counters (not shown in Figure 2-1).
®* Internal caches and buffers (not shown in Figure 2-1).

Performance-monitoring counters are event counters that can be programmed to count processor events such as
the number of instructions decoded, the number of interrupts received, or the number of cache loads. See also:
Chapter 19, “Performance Monitoring Events.”

The processor provides several internal caches and buffers. The caches are used to store both data and instruc-
tions. The buffers are used to store things like decoded addresses to system and application segments and write
operations waiting to be performed. See also: Chapter 11, *“Memory Cache Control.”

2.2 MODES OF OPERATION

The IA-32 architecture supports three operating modes and one quasi-operating mode:

®* Protected mode — This is the native operating mode of the processor. It provides a rich set of architectural
features, flexibility, high performance and backward compatibility to existing software base.

® Real-address mode — This operating mode provides the programming environment of the Intel 8086
processor, with a few extensions (such as the ability to switch to protected or system management mode).

®* System management mode (SMM) — SMM is a standard architectural feature in all IA-32 processors,
beginning with the Intel386 SL processor. This mode provides an operating system or executive with a
transparent mechanism for implementing power management and OEM differentiation features. SMM is
entered through activation of an external system interrupt pin (SMI#), which generates a system management
interrupt (SMI). In SMM, the processor switches to a separate address space while saving the context of the

Vol. 3A 2-7

SYSTEM ARCHITECTURE OVERVIEW

currently running program or task. SMM-specific code may then be executed transparently. Upon returning
from SMM, the processor is placed back into its state prior to the SMI.

® Virtual-8086 mode — In protected mode, the processor supports a quasi-operating mode known as virtual-
8086 mode. This mode allows the processor execute 8086 software in a protected, multitasking environment.

Intel 64 architecture supports all operating modes of IA-32 architecture and IA-32e modes:

®* 1A-32e mode — In IA-32e mode, the processor supports two sub-modes: compatibility mode and 64-bit
mode. 64-bit mode provides 64-bit linear addressing and support for physical address space larger than 64
GBytes. Compatibility mode allows most legacy protected-mode applications to run unchanged.

Figure 2-3 shows how the processor moves between operating modes.

SMI#
Real-Address
—»
Mode
Reset
or
Reset or RSM
PE=0 -
SMI#
Reset B
~ Rem System

Management

LME=1, CRO.PG=1" gy Mode

* See Section 9.8.5

Virtual-8086 SMI# See Section 9.8.5.4

Mode

Figure 2-3. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or a reset. The PE flag in control register CRO then
controls whether the processor is operating in real-address or protected mode. See also: Section 9.9, "Mode
Switching.” and Section 4.1.2, “Paging-Mode Enabling.”

The VM flag in the EFLAGS register determines whether the processor is operating in protected mode or virtual-
8086 mode. Transitions between protected mode and virtual-8086 mode are generally carried out as part of a task
switch or a return from an interrupt or exception handler. See also: Section 20.2.5, “Entering Virtual-8086 Mode.”

The LMA bit (IA32_EFER.LMA[bit 10]) determines whether the processor is operating in IA-32e mode. When
running in IA-32e mode, 64-bit or compatibility sub-mode operation is determined by CS.L bit of the code segment.
The processor enters into IA-32e mode from protected mode by enabling paging and setting the LME bit
(IA32_EFER.LME[bit 8]). See also: Chapter 9, “Processor Management and Initialization.”

The processor switches to SMM whenever it receives an SMI while the processor is in real-address, protected,
virtual-8086, or IA-32e modes. Upon execution of the RSM instruction, the processor always returns to the mode
it was in when the SMI occurred.

2-8 Vol.3A

2.2.1

SYSTEM ARCHITECTURE OVERVIEW

Extended Feature Enable Register

The IA32_EFER MSR provides several fields related to IA-32e mode enabling and operation. It also provides one
field that relates to page-access right modification (see Section 4.6, “"Access Rights”). The layout of the
IA32_EFER MSR is shown in Figure 2-4.

63 121110 9 8 7 1.0

IA32_EFER

Execute Disable Bit Enable

1A-32e Mode Active

1A-32e Mode Enable

SYSCALL Enable

D Reserved

Figure 2-4. IA32_EFER MSR Layout

Table 2-1. IA32_EFER MSR Information

Bit Description
0 SYSCALL Enable: IA32_EFER.SCE (R/W)
Enables SYSCALL/SYSRET instructions in 64-bit mode.
7:1 Reserved.
8 IA-32e Mode Enable: IA32_EFER.LME (R/W)
Enables IA-32e mode operation.
9 Reserved.
10 IA-32e Mode Active: IA32_EFER.LMA (R)
Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable: IA32_EFER.NXE (R/W)
Enables page access restriction by preventing instruction fetches from PAE pages with the XD bit set (See Section 4.6).
63:12 Reserved.
2.3 SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and IOPL field of the EFLAGS register control I/O, maskable hardware interrupts, debugging, task
switching, and the virtual-8086 mode (see Figure 2-5). Only privileged code (typically operating system or execu-
tive code) should be allowed to modify these bits.

The system flags and IOPL are:

TF

Trap (bit 8) — Set to enable single-step mode for debugging; clear to disable single-step mode. In single-
step mode, the processor generates a debug exception after each instruction. This allows the execution
state of a program to be inspected after each instruction. If an application program sets the TF flag using a

Vol. 3A 2-9

SYSTEM ARCHITECTURE OVERVIEW

IF

IOPL

NT

RF

VM

POPF, POPFD, or IRET instruction, a debug exception is generated after the instruction that follows the
POPF, POPFD, or IRET.

31 222120191817 161514 131211109 8 7 6 5 4 3 2 1 0

VIVIAlv]R] [n] 6 ool |t]s|z| (Al |el.|c

Reserved (set to 0) D'L;_CMFOT b |EIFIFIFIEIEIOIF|O[F|1]F
L

ID — Identification FlagQ

VIP — Virtual Interrupt Pending

VIF — Virtual Interrupt Flag

AC — Alignment Check / Access Control
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— /O Privilege Level

IF — Interrupt Enable Flag
TF — Trap Flag
D Reserved

Figure 2-5. System Flags in the EFLAGS Register

Interrupt enable (bit 9) — Controls the response of the processor to maskable hardware interrupt
requests (see also: Section 6.3.2, “"Maskable Hardware Interrupts”). The flag is set to respond to maskable
hardware interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect the gener-
ation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL, IOPL, and the state of the VME
flag in control register CR4 determine whether the IF flag can be modified by the CLI, STI, POPF, POPFD,
and IRET.

1/0 privilege level field (bits 12 and 13) — Indicates the I/0 privilege level (IOPL) of the currently
running program or task. The CPL of the currently running program or task must be less than or equal to
the IOPL to access the I/O address space. The POPF and IRET instructions can modify this field only when
operating at a CPL of 0.

The IOPL is also one of the mechanisms that controls the modification of the IF flag and the handling of
interrupts in virtual-8086 mode when virtual mode extensions are in effect (when CR4.VME = 1). See also:
Chapter 18, “Input/Output,” in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 1.

Nested task (bit 14) — Controls the chaining of interrupted and called tasks. The processor sets this flag
on calls to a task initiated with a CALL instruction, an interrupt, or an exception. It examines and modifies
this flag on returns from a task initiated with the IRET instruction. The flag can be explicitly set or cleared
with the POPF/POPFD instructions; however, changing to the state of this flag can generate unexpected
exceptions in application programs.

See also: Section 7.4, “Task Linking.”

Resume (bit 16) — Controls the processor’s response to instruction-breakpoint conditions. When set, this
flag temporarily disables debug exceptions (#DB) from being generated for instruction breakpoints
(although other exception conditions can cause an exception to be generated). When clear, instruction
breakpoints will generate debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following a debug exception
that was caused by an instruction breakpoint condition. Here, debug software must set this flag in the
EFLAGS image on the stack just prior to returning to the interrupted program with IRETD (to prevent the
instruction breakpoint from causing another debug exception). The processor then automatically clears
this flag after the instruction returned to has been successfully executed, enabling instruction breakpoint
faults again.

See also: Section 17.3.1.1, “Instruction-Breakpoint Exception Condition.”
Virtual-8086 mode (bit 17) — Set to enable virtual-8086 mode; clear to return to protected mode.

2-10 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

See also: Section 20.2.1, “Enabling Virtual-8086 Mode.”

AC Alignment check or access control (bit 18) — If the AM bit is set in the CRO register, alignment
checking of user-mode data accesses is enabled if and only if this flag is 1. An alignment-check exception
is generated when reference is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check exceptions are gener-
ated only in user mode (privilege level 3). Memory references that default to privilege level 0, such as
segment descriptor loads, do not generate this exception even when caused by instructions executed in
user-mode.

The alignment-check exception can be used to check alignment of data. This is useful when exchanging
data with processors which require all data to be aligned. The alignment-check exception can also be used
by interpreters to flag some pointers as special by misaligning the pointer. This eliminates overhead of
checking each pointer and only handles the special pointer when used.

If the SMAP bit is set in the CR4 register, explicit supervisor-mode data accesses to user-mode pages are
allowed if and only if this bit is 1. See Section 4.6, “Access Rights.”

VIF Virtual Interrupt (bit 19) — Contains a virtual image of the IF flag. This flag is used in conjunction with
the VIP flag. The processor only recognizes the VIF flag when either the VME flag or the PVI flag in control
register CR4 is set and the IOPL is less than 3. (The VME flag enables the virtual-8086 mode extensions;
the PVI flag enables the protected-mode virtual interrupts.)

See also: Section 20.3.3.5, “"Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode
Virtual Interrupts.”

VIP Virtual interrupt pending (bit 20) — Set by software to indicate that an interrupt is pending; cleared to
indicate that no interrupt is pending. This flag is used in conjunction with the VIF flag. The processor reads
this flag but never modifies it. The processor only recognizes the VIP flag when either the VME flag or the
PVI flag in control register CR4 is set and the IOPL is less than 3. The VME flag enables the virtual-8086
mode extensions; the PVI flag enables the protected-mode virtual interrupts.

See Section 20.3.3.5, "Method 6: Software Interrupt Handling,” and Section 20.4, “Protected-Mode Virtual
Interrupts.”

ID Identification (bit 21) — The ability of a program or procedure to set or clear this flag indicates support
for the CPUID instruction.

2.3.1 System Flags and Fields in IA-32e Mode

In 64-bit mode, the RFLAGS register expands to 64 bits with the upper 32 bits reserved. System flags in RFLAGS
(64-bit mode) or EFLAGS (compatibility mode) are shown in Figure 2-5.

In IA-32e mode, the processor does not allow the VM bit to be set because virtual-8086 mode is not supported
(attempts to set the bit are ignored). Also, the processor will not set the NT bit. The processor does, however, allow
software to set the NT bit (note that an IRET causes a general protection fault in IA-32e mode if the NT bit is set).

In IA-32e mode, the SYSCALL/SYSRET instructions have a programmable method of specifying which bits are
cleared in RFLAGS/EFLAGS. These instructions save/restore EFLAGS/RFLAGS.

2.4 MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR) that specify the locations
of the data structures which control segmented memory management (see Figure 2-6). Special instructions are
provided for loading and storing these registers.

Vol. 3A 2-11

SYSTEM ARCHITECTURE OVERVIEW

System Table Registers

47(79) 16 15 0
GDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
IDTR 32(64)-bit Linear Base Address 16-Bit Table Limit
System Segment Segment Descriptor Registers (Automatically Loaded)
Registers
0 Attributes
Task [seq. sel 32(64)-bit Linear Base Add s t Limit
Register eg. Sel. (64)-bit Linear Base ress egment Limi
LDTR Seg. Sel. 32(64)-bit Linear Base Address Segment Limit

Figure 2-6. Memory Management Registers

2.4.1 Global Descriptor Table Register (GDTR)

The GDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and the 16-bit table
limit for the GDT. The base address specifies the linear address of byte 0 of the GDT;, the table limit specifies the
number of bytes in the table.

The LGDT and SGDT instructions load and store the GDTR register, respectively. On power up or reset of the
processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. A new base address must
be loaded into the GDTR as part of the processor initialization process for protected-mode operation.

See also: Section 3.5.1, "Segment Descriptor Tables.”

2.4.2 Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the LDT. The base address specifies the linear address of byte
0 of the LDT segment; the segment limit specifies the humber of bytes in the segment. See also: Section 3.5.1,
“Segment Descriptor Tables.”

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register, respectively. The
segment that contains the LDT must have a segment descriptor in the GDT. When the LLDT instruction loads a
segment selector in the LDTR: the base address, limit, and descriptor attributes from the LDT descriptor are auto-
matically loaded in the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and descriptor for the LDT
for the new task. The contents of the LDTR are not automatically saved prior to writing the new LDT information
into the register.

On power up or reset of the processor, the segment selector and base address are set to the default value of 0 and
the limit is set to OFFFFH.

2.4.3 IDTR Interrupt Descriptor Table Register

The IDTR register holds the base address (32 bits in protected mode; 64 bits in IA-32e mode) and 16-bit table limit
for the IDT. The base address specifies the linear address of byte 0 of the IDT; the table limit specifies the number
of bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respectively. On power up or
reset of the processor, the base address is set to the default value of 0 and the limit is set to OFFFFH. The base
address and limit in the register can then be changed as part of the processor initialization process.

See also: Section 6.10, “Interrupt Descriptor Table (IDT).”

2-12 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

24.4 Task Register (TR)

The task register holds the 16-bit segment selector, base address (32 bits in protected mode; 64 bits in IA-32e
mode), segment limit, and descriptor attributes for the TSS of the current task. The selector references the TSS
descriptor in the GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit speci-
fies the number of bytes in the TSS. See also: Section 7.2.4, “Task Register.”

The LTR and STR instructions load and store the segment selector part of the task register, respectively. When the
LTR instruction loads a segment selector in the task register, the base address, limit, and descriptor attributes from
the TSS descriptor are automatically loaded into the task register. On power up or reset of the processor, the base
address is set to the default value of 0 and the limit is set to OFFFFH.

When a task switch occurs, the task register is automatically loaded with the segment selector and descriptor for
the TSS for the new task. The contents of the task register are not automatically saved prior to writing the new TSS
information into the register.

2.5 CONTROL REGISTERS

Control registers (CR0, CR1, CR2, CR3, and CR4; see Figure 2-7) determine operating mode of the processor and
the characteristics of the currently executing task. These registers are 32 bits in all 32-bit modes and compatibility
mode.

In 64-bit mode, control registers are expanded to 64 bits. The MOV CRn instructions are used to manipulate the
register bits. Operand-size prefixes for these instructions are ignored. The following is also true:

®* The control registers can be read and loaded (or modified) using the move-to-or-from-control-registers forms
of the MOV instruction. In protected mode, the MOV instructions allow the control registers to be read or loaded
(at privilege level 0 only). This restriction means that application programs or operating-system procedures
(running at privilege levels 1, 2, or 3) are prevented from reading or loading the control registers.

® Bits 63:32 of CRO and CR4 are reserved and must be written with zeros. Writing a nonzero value to any of the
upper 32 bits results in a general-protection exception, #GP(0).

® All 64 bits of CR2 are writable by software.
® Bits 51:40 of CR3 are reserved and must be 0.

® The MOV CRn instructions do not check that addresses written to CR2 and CR3 are within the linear-address or
physical-address limitations of the implementation.

®* Register CR8 is available in 64-bit mode only.

The control registers are summarized below, and each architecturally defined control field in these control registers
is described individually. In Figure 2-7, the width of the register in 64-bit mode is indicated in parenthesis (except
for CRO).

® CRO — Contains system control flags that control operating mode and states of the processor.
® CR1 — Reserved.
® CR2 — Contains the page-fault linear address (the linear address that caused a page fault).

® CR3 — Contains the physical address of the base of the paging-structure hierarchy and two flags (PCD and
PWT). Only the most-significant bits (less the lower 12 bits) of the base address are specified; the lower 12 bits
of the address are assumed to be 0. The first paging structure must thus be aligned to a page (4-KByte)
boundary. The PCD and PWT flags control caching of that paging structure in the processor’s internal data
caches (they do not control TLB caching of page-directory information).

When using the physical address extension, the CR3 register contains the base address of the page-directory-
pointer table. In IA-32e mode, the CR3 register contains the base address of the PML4 table.

See also: Chapter 4, “Paging.”

® CR4 — Contains a group of flags that enable several architectural extensions, and indicate operating system or
executive support for specific processor capabilities.

Vol.3A 2-13

SYSTEM ARCHITECTURE OVERVIEW

® CR8 — Provides read and write access to the Task Priority Register (TPR). It specifies the priority threshold
value that operating systems use to control the priority class of external interrupts allowed to interrupt the
processor. This register is available only in 64-bit mode. However, interrupt filtering continues to apply in
compatibility mode.

31(63) 222120 181716151413 121110 9 8 7 6 5 4 3 2 1 0
P|S|S MM Plp|m[p(p| |T|P|V
Reserved KX""E" Mg\(" M clalc|als|2|s|v|m| CR4
E X ' E|E|e|e|E|E|D|I]|E
P|P E|E P
J |—FSGSBASE LI—OSFXSR
OSXSAVE PCIDE OSXMMEXCPT
31(63) 121 54 32
PP
) CR3
- clw
Page-Directory Base olT (PDBR)
31(63) 0
Page-Fault Linear Address CR2
31(63) 0
CR1
313029 28 191817 16 15 6543210
P[C|N Al |w N|E|T|E|M|P
G|D|wW M| |P E[T|s|m|p|E| CRO
l:l Reserved

Figure 2-7. Control Registers

When loading a control register, reserved bits should always be set to the values previously read. The flags in
control registers are:

CRO.PG

Paging (bit 31 of CRO) — Enables paging when set; disables paging when clear. When paging is
disabled, all linear addresses are treated as physical addresses. The PG flag has no effect if the PE flag (bit
0 of register CRO) is not also set; setting the PG flag when the PE flag is clear causes a general-protection
exception (#GP). See also: Chapter 4, “Paging.”

On Intel 64 processors, enabling and disabling IA-32e mode operation also requires modifying CRO.PG.
CRO.CD

Cache Disable (bit 30 of CRO) — When the CD and NW flags are clear, caching of memory locations for
the whole of physical memory in the processor’s internal (and external) caches is enabled. When the CD
flag is set, caching is restricted as described in Table 11-5. To prevent the processor from accessing and
updating its caches, the CD flag must be set and the caches must be invalidated so that no cache hits can
occur.

See also: Section 11.5.3, “Preventing Caching,” and Section 11.5, “Cache Control.”

CRO.NW
Not Write-through (bit 29 of CR0O) — When the NW and CD flags are clear, write-back (for Pentium 4,
Intel Xeon, P6 family, and Pentium processors) or write-through (for Intel486 processors) is enabled for
writes that hit the cache and invalidation cycles are enabled. See Table 11-5 for detailed information about
the effect of the NW flag on caching for other settings of the CD and NW flags.

2-14 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CRO.AM
Alignment Mask (bit 18 of CRO) — Enables automatic alignment checking when set; disables alignment
checking when clear. Alignment checking is performed only when the AM flag is set, the AC flag in the
EFLAGS register is set, CPL is 3, and the processor is operating in either protected or virtual-8086 mode.

CRO.WP
Write Protect (bit 16 of CRO) — When set, inhibits supervisor-level procedures from writing into read-
only pages; when clear, allows supervisor-level procedures to write into read-only pages (regardless of the
U/S bit setting; see Section 4.1.3 and Section 4.6). This flag facilitates implementation of the copy-on-
write method of creating a new process (forking) used by operating systems such as UNIX.

CRO.NE
Numeric Error (bit 5 of CRO) — Enables the native (internal) mechanism for reporting x87 FPU errors
when set; enables the PC-style x87 FPU error reporting mechanism when clear. When the NE flag is clear
and the IGNNE# input is asserted, x87 FPU errors are ignored. When the NE flag is clear and the IGNNE#
input is deasserted, an unmasked x87 FPU error causes the processor to assert the FERR# pin to generate
an external interrupt and to stop instruction execution immediately before executing the next waiting
floating-point instruction or WAIT/FWAIT instruction.

The FERR# pin is intended to drive an input to an external interrupt controller (the FERR# pin emulates the
ERROR# pin of the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and FERR#
pin are used with external logic to implement PC-style error reporting. Using FERR# and IGNNE# to handle
floating-point exceptions is deprecated by modern operating systems; this non-native approach also limits
newer processors to operate with one logical processor active.

See also: Section 8.7, “Handling x87 FPU Exceptions in Software” in Chapter 8, "Programming with the x87
FPU,” and Appendix A, “EFLAGS Cross-Reference,” in the Intel® 64 and IA-32 Architectures Software
Developer’'s Manual, Volume 1.

CRO.ET
Extension Type (bit 4 of CRO) — Reserved in the Pentium 4, Intel Xeon, P6 family, and Pentium proces-
sors. In the Pentium 4, Intel Xeon, and P6 family processors, this flag is hardcoded to 1. In the Intel386
and Intel486 processors, this flag indicates support of Intel 387 DX math coprocessor instructions when
set.

CRO.TS
Task Switched (bit 3 of CR0O) — Allows the saving of the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context on a task switch to be delayed until an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction is
actually executed by the new task. The processor sets this flag on every task switch and tests it when
executing x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

e Ifthe TS flag is set and the EM flag (bit 2 of CRO) is clear, a device-not-available exception (#NM) is
raised prior to the execution of any x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction; with the
exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.
See the paragraph below for the special case of the WAIT/FWAIT instructions.

e Ifthe TS flag is set and the MP flag (bit 1 of CR0O) and EM flag are clear, an #NM exception is not raised
prior to the execution of an x87 FPU WAIT/FWAIT instruction.

* If the EM flag is set, the setting of the TS flag has no effect on the execution of x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

Table 2-2 shows the actions taken when the processor encounters an x87 FPU instruction based on the
settings of the TS, EM, and MP flags. Table 12-1 and 13-1 show the actions taken when the processor
encounters an MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction.

The processor does not automatically save the context of the x87 FPU, XMM, and MXCSR registers on a
task switch. Instead, it sets the TS flag, which causes the processor to raise an #NM exception whenever
it encounters an x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction in the instruction stream for the
new task (with the exception of the instructions listed above).

The fault handler for the #NM exception can then be used to clear the TS flag (with the CLTS instruction)
and save the context of the x87 FPU, XMM, and MXCSR registers. If the task never encounters an x87
FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instruction, the x87 FPU/MMX/SSE/SSE2/SSE3/SSSE3/SSE4
context is never saved.

Vol.3A 2-15

SYSTEM ARCHITECTURE OVERVIEW

Table 2-2. Action Taken By x87 FPU Instructions for Different Combinations of EM, MP, and TS

CRO Flags x87 FPU Instruction Type
EM MP TS Floating-Point WAIT/FWAIT
0 0 0 Execute Execute.
0 0 1 #NM Exception Execute.
0 1 0 Execute Execute.
0 1 1 #NM Exception #NM exception.
1 0 0 #NM Exception Execute.
1 0 1 #NM Exception Execute.
1 1 0 #NM Exception Execute.
1 1 1 #NM Exception #NM exception.
CRO.EM

Emulation (bit 2 of CRO) — Indicates that the processor does not have an internal or external x87 FPU
when set; indicates an x87 FPU is present when clear. This flag also affects the execution of
MMX/SSE/SSE2/SSE3/SSSE3/SSE4 instructions.

CRO.MP

CRO.PE

When the EM flag is set, execution of an x87 FPU instruction generates a device-not-available exception
(#NM). This flag must be set when the processor does not have an internal x87 FPU or is not connected to
an external math coprocessor. Setting this flag forces all floating-point instructions to be handled by soft-
ware emulation. Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor
and x87 FPU or math coprocessor present in the system. Table 2-2 shows the interaction of the EM, MP, and
TS flags.

Also, when the EM flag is set, execution of an MMX instruction causes an invalid-opcode exception (#UD)
to be generated (see Table 12-1). Thus, if an IA-32 or Intel 64 processor incorporates MMX technology, the
EM flag must be set to 0 to enable execution of MMX instructions.

Similarly for SSE/SSE2/SSE3/SSSE3/SSE4 extensions, when the EM flag is set, execution of most
SSE/SSE2/SSE3/SSSE3/SSE4 instructions causes an invalid opcode exception (#UD) to be generated (see
Table 13-1). If an IA-32 or Intel 64 processor incorporates the SSE/SSE2/SSE3/SSSE3/SSE4 extensions,
the EM flag must be set to 0 to enable execution of these extensions. SSE/SSE2/SSE3/SSSE3/SSE4
instructions not affected by the EM flag include: PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI,
CLFLUSH, CRC32, and POPCNT.

Monitor Coprocessor (bit 1 of CRO) — Controls the interaction of the WAIT (or FWAIT) instruction with
the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT instruction generates a device-not-available exception
(#NM) if the TS flag is also set. If the MP flag is clear, the WAIT instruction ignores the setting of the TS flag.
Table 9-3 shows the recommended setting of this flag, depending on the IA-32 processor and x87 FPU or
math coprocessor present in the system. Table 2-2 shows the interaction of the MP, EM, and TS flags.

Protection Enable (bit O of CRO) — Enables protected mode when set; enables real-address mode when
clear. This flag does not enable paging directly. It only enables segment-level protection. To enable paging,
both the PE and PG flags must be set.

See also: Section 9.9, “"Mode Switching.”

CR3.PCD

Page-level Cache Disable (bit 4 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging? if CR4.PCIDE=1.

2. Earlier versions of this manual used the term “IA-32e paging” to identify 4-level paging.

2-16 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR3.PWT
Page-level Write-Through (bit 3 of CR3) — Controls the memory type used to access the first paging
structure of the current paging-structure hierarchy. See Section 4.9, “Paging and Memory Typing”. This bit
is not used if paging is disabled, with PAE paging, or with 4-level paging if CR4.PCIDE=1.

CR4.VME
Virtual-8086 Mode Extensions (bit O of CR4) — Enables interrupt- and exception-handling extensions
in virtual-8086 mode when set; disables the extensions when clear. Use of the virtual mode extensions can
improve the performance of virtual-8086 applications by eliminating the overhead of calling the virtual-
8086 monitor to handle interrupts and exceptions that occur while executing an 8086 program and,
instead, redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also provides
hardware support for a virtual interrupt flag (VIF) to improve reliability of running 8086 programs in multi-
tasking and multiple-processor environments.

See also: Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode.”

CR4.PVI
Protected-Mode Virtual Interrupts (bit 1 of CR4) — Enables hardware support for a virtual interrupt
flag (VIF) in protected mode when set; disables the VIF flag in protected mode when clear.

See also: Section 20.4, “Protected-Mode Virtual Interrupts.”

CR4.TSD
Time Stamp Disable (bit 2 of CR4) — Restricts the execution of the RDTSC instruction to procedures
running at privilege level 0 when set; allows RDTSC instruction to be executed at any privilege level when
clear. This bit also applies to the RDTSCP instruction if supported (if CPUID.80000001H:EDX[27] = 1).

CR4.DE
Debugging Extensions (bit 3 of CR4) — References to debug registers DR4 and DR5 cause an unde-

fined opcode (#UD) exception to be generated when set; when clear, processor aliases references to regis-
ters DR4 and DR5 for compatibility with software written to run on earlier IA-32 processors.

See also: Section 17.2.2, "Debug Registers DR4 and DR5.”

CR4.PSE
Page Size Extensions (bit 4 of CR4) — Enables 4-MByte pages with 32-bit paging when set; restricts
32-bit paging to pages of 4 KBytes when clear.
See also: Section 4.3, “32-Bit Paging.”

CR4.PAE
Physical Address Extension (bit 5 of CR4) — When set, enables paging to produce physical addresses

with more than 32 bits. When clear, restricts physical addresses to 32 bits. PAE must be set before entering
IA-32e mode.

See also: Chapter 4, “Paging.”

CR4.MCE
Machine-Check Enable (bit 6 of CR4) — Enables the machine-check exception when set; disables the
machine-check exception when clear.

See also: Chapter 15, “"Machine-Check Architecture.”

CR4.PGE
Page Global Enable (bit 7 of CR4) — (Introduced in the P6 family processors.) Enables the global page
feature when set; disables the global page feature when clear. The global page feature allows frequently
used or shared pages to be marked as global to all users (done with the global flag, bit 8, in a page-direc-
tory or page-table entry). Global pages are not flushed from the translation-lookaside buffer (TLB) on a
task switch or a write to register CR3.

When enabling the global page feature, paging must be enabled (by setting the PG flag in control register
CRO) before the PGE flag is set. Reversing this sequence may affect program correctness, and processor
performance will be impacted.

See also: Section 4.10, “Caching Translation Information.”

Vol.3A 2-17

SYSTEM ARCHITECTURE OVERVIEW

CR4.PCE
Performance-Monitoring Counter Enable (bit 8 of CR4) — Enables execution of the RDPMC instruc-
tion for programs or procedures running at any protection level when set; RDPMC instruction can be
executed only at protection level 0 when clear.

CR4.0SFXSR
Operating System Support for FXSAVE and FXRSTOR instructions (bit 9 of CR4) — When set, this
flag: (1) indicates to software that the operating system supports the use of the FXSAVE and FXRSTOR
instructions, (2) enables the FXSAVE and FXRSTOR instructions to save and restore the contents of the
XMM and MXCSR registers along with the contents of the x87 FPU and MMX registers, and (3) enables the
processor to execute SSE/SSE2/SSE3/SSSE3/SSE4 instructions, with the exception of the PAUSE,
PREFETCHh, SFENCE, LFENCE, MFENCE, MOVNTI, CLFLUSH, CRC32, and POPCNT.

If this flag is clear, the FXSAVE and FXRSTOR instructions will save and restore the contents of the x87 FPU
and MMX registers, but they may not save and restore the contents of the XMM and MXCSR registers. Also,
the processor will generate an invalid opcode exception (#UD) if it attempts to execute any
SSE/SSE2/SSE3 instruction, with the exception of PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE,
MOVNTI, CLFLUSH, CRC32, and POPCNT. The operating system or executive must explicitly set this flag.

NOTE

CPUID feature flag FXSR indicates availability of the FXSAVE/FXRSTOR instructions. The OSFXSR
bit provides operating system software with a means of enabling FXSAVE/FXRSTOR to save/restore
the contents of the X87 FPU, XMM and MXCSR registers. Consequently OSFXSR bit indicates that
the operating system provides context switch support for SSE/SSE2/SSE3/SSSE3/SSE4.

CR4.0SXMMEXCPT
Operating System Support for Unmasked SIMD Floating-Point Exceptions (bit 10 of CR4) —
When set, indicates that the operating system supports the handling of unmasked SIMD floating-point
exceptions through an exception handler that is invoked when a SIMD floating-point exception (#XM) is
generated. SIMD floating-point exceptions are only generated by SSE/SSE2/SSE3/SSE4.1 SIMD floating-
point instructions.

The operating system or executive must explicitly set this flag. If this flag is not set, the processor will
generate an invalid opcode exception (#UD) whenever it detects an unmasked SIMD floating-point excep-
tion.

CR4.UMIP
User-Mode Instruction Prevention (bit 11 of CR4) — When set, the following instructions cannot be
executed if CPL > 0: SGDT, SIDT, SLDT, SMSW, and STR. An attempt at such execution causes a general-
protection exception (#GP).

CR4.VMXE
VMX-Enable Bit (bit 13 of CR4) — Enables VMX operation when set. See Chapter 23, “Introduction to
Virtual Machine Extensions.”

CR4.SMXE
SMX-Enable Bit (bit 14 of CR4) — Enables SMX operation when set. See Chapter 6, “Safer Mode Exten-
sions Reference” of Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 2D.

CR4.FSGSBASE
FSGSBASE-Enable Bit (bit 16 of CR4) — Enables the instructions RDFSBASE, RDGSBASE, WRFSBASE,
and WRGSBASE.

CR4.PCIDE
PCID-Enable Bit (bit 17 of CR4) — Enables process-context identifiers (PCIDs) when set. See Section
4.10.1, “Process-Context Identifiers (PCIDs)”. Can be set only in IA-32e mode (if IA32_EFER.LMA = 1).

2-18 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

CR4.0SXSAVE
XSAVE and Processor Extended States-Enable Bit (bit 18 of CR4) — When set, this flag: (1) indi-
cates (via CPUID.01H:ECX.OSXSAVE[bit 27]) that the operating system supports the use of the XGETBV,
XSAVE and XRSTOR instructions by general software; (2) enables the XSAVE and XRSTOR instructions to
save and restore the x87 FPU state (including MMX registers), the SSE state (XMM registers and MXCSR),
along with other processor extended states enabled in XCRO; (3) enables the processor to execute XGETBV
and XSETBYV instructions in order to read and write XCRO0. See Section 2.6 and Chapter 13, "System
Programming for Instruction Set Extensions and Processor Extended States”.

CR4.SMEP
SMEP-Enable Bit (bit 20 of CR4) — Enables supervisor-mode execution prevention (SMEP) when set.
See Section 4.6, “Access Rights”.

CR4.SMAP
SMAP-Enable Bit (bit 21 of CR4) — Enables supervisor-mode access prevention (SMAP) when set. See
Section 4.6, “Access Rights.”

CR4.PKE
Protection-Key-Enable Bit (bit 22 of CR4) — Enables 4-level paging to associate each linear address
with a protection key. The PKRU register specifies, for each protection key, whether user-mode linear
addresses with that protection key can be read or written. This bit also enables access to the PKRU register
using the RDPKRU and WRPKRU instructions.

CR8.TPL
Task Priority Level (bit 3:0 of CR8) — This sets the threshold value corresponding to the highest-
priority interrupt to be blocked. A value of 0 means all interrupts are enabled. This field is available in 64-
bit mode. A value of 15 means all interrupts will be disabled.

2.5.1 CPUID Qualification of Control Register Flags

Not all flags in control register CR4 are implemented on all processors. With the exception of the PCE flag, they can
be qualified with the CPUID instruction to determine if they are implemented on the processor before they are
used.

The CR8 register is available on processors that support Intel 64 architecture.

2.6 EXTENDED CONTROL REGISTERS (INCLUDING XCRO)

If CPUID.O1H:ECX.XSAVE[bit 26] is 1, the processor supports one or more extended control registers (XCRSs).
Currently, the only such register defined is XCRO. This register specifies the set of processor state components for
which the operating system provides context management, e.g. x87 FPU state, SSE state, AVX state. The OS
programs XCRO to reflect the features for which it provides context management.

Vol.3A 2-19

SYSTEM ARCHITECTURE OVERVIEW

63 9 76543 210

\:’ Reserved (must be 0) 1

Reserved for XCRO bit vector expansion
Reserved / Future processor extended states
PKRU state
Hi16_ZMM state
ZMM_Hi256 state
Opmask state
BNDCSR state
BNDREG state
AVX state
SSE state
x87 FPU/MMX state (must be 1)

Figure 2-8. XCRO

Software can access XCRO only if CR4.0SXSAVE[bit 18] = 1. (This bit is also readable as
CPUID.01H:ECX.0OSXSAVE[bit 27].) Software can use CPUID leaf function ODH to enumerate the bits in XCRO that
the processor supports (see CPUID instruction in Intel® 64 and 1A-32 Architectures Software Developer’'s Manual,
Volume 2A). Each supported state component is represented by a bit in XCR0O. System software enables state
components by loading an appropriate bit mask value into XCRO using the XSETBV instruction.

As each bit in XCRO (except bit 63) corresponds to a processor state component, XCRO thus provides support for
up to 63 sets of processor state components. Bit 63 of XCRO is reserved for future expansion and will not represent
a processor state component.

Currently, XCRO defines support for the following state components:

XCRO0.X87 (bit 0): This bit 0 must be 1. An attempt to write 0 to this bit causes a #GP exception.

XCRO.SSE (bit 1): If 1, the XSAVE feature set can be used to manage MXCSR and the XMM registers (XMMO-
XMM15 in 64-bit mode; otherwise XMM0-XMM?7).

XCRO.AVX (bit 2): If 1, AVX instructions can be executed and the XSAVE feature set can be used to manage the
upper halves of the YMM registers (YMM0-YMM15 in 64-bit mode; otherwise YMM0-YMM?7).

XCRO.BNDREG (bit 3): If 1, MPX instructions can be executed and the XSAVE feature set can be used to
manage the bounds registers BNDO-BND3.

XCRO.BNDCSR (bit 4): If 1, MPX instructions can be executed and the XSAVE feature set can be used to
manage the BNDCFGU and BNDSTATUS registers.

XCRO.opmask (bit 5): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the opmask registers k0-k7.

XCRO.ZMM_Hi256 (bit 6): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the upper halves of the lower ZMM registers (ZMM0-ZMM15 in 64-bit mode; otherwise ZMM0-ZMM?7).

XCRO.Hi16_ZMM (bit 7): If 1, AVX-512 instructions can be executed and the XSAVE feature set can be used to
manage the upper ZMM registers (ZMM16-ZMM31, only in 64-bit mode).

XCRO.PKRU (bit 9): If 1, the XSAVE feature set can be used to manage the PKRU register (see Section 2.7).

2-20 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

An attempt to use XSETBV to write to XCRO results in general-protection exceptions (#GP) if it would do any of the
following:

®* Seta bit reserved in XCRO for a given processor (as determined by the contents of EAX and EDX after executing
CPUID with EAX=0DH, ECX= 0OH).

® Clear XCR0.x87.

® Clear XCR0O.SSE and set XCRO.AVX.

® (Clear XCR0.AVX and set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM.

® Set either XCRO.BNDREG and XCRO.BNDCSR while not setting the other.

® Set any of XCR0O.opmask, XCR0.ZMM_Hi256, and XCR0.Hi16_ZMM while not setting all of them.
After reset, all bits (except bit 0) in XCRO are cleared to zero; XCR0O[0] is set to 1.

2.7 PROTECTION KEY RIGHTS REGISTER (PKRU)

If CPUID.(EAX=07H,ECX=0H):ECX.PKU [bit 3] = 1, the processor supports the protection-key feature for 4-level
paging. The feature allows selective protection of user-mode pages depending on the 4-bit protection key assigned
to each page. The protection key rights register for user pages (PKRU) allows software to specify the access
rights for each protection key.

3130292827 26252423222120191817 161514131211 10 9 8 7 6 5 4 3 2 1 0 BitPosition

WIA|W[AIWAIWA| WA WAIWA WA WA WAIWA| WA|WAIWA WA|W
bppb/bDb/DDD|D/D/D|D/D/D|D/D/D|D|D|D|D/D|D|D|D|D|D|D|D|D|D
15/ 1514|1413/ 13| 12{12/11|11({10/10 |9 (9 |8 (|8 |7 |7 |6 |6 |5 |5|4 |4 (3|3 |2 |2|1|1|0

co>»

Figure 2-9. Protection Key Rights Register for User Pages (PKRU)

The layout of the PKRU register is shown in Figure 2-9. It contains 16 pairs of disable controls to prevent data
accesses to user-mode linear addresses based on their protection keys. Each protection key i is associated with
two bits in the PKRU register:

®* Bit 2i, shown as “"ADi"” (access disable): if set, the processor prevents any data accesses to user-mode linear
addresses with protection key i.

® Bit 2i+1, shown as “WDi” (write disable): if set, the processor prevents write accesses to user-mode linear
addresses with protection key i.

See Section 4.6.2, “Protection Keys,” for details of how the processor uses the PKRU register to control accesses to
user-mode linear addresses.

2.8 SYSTEM INSTRUCTION SUMMARY

System instructions handle system-level functions such as loading system registers, managing the cache,
managing interrupts, or setting up the debug registers. Many of these instructions can be executed only by oper-
ating-system or executive procedures (that is, procedures running at privilege level 0). Others can be executed at
any privilege level and are thus available to application programs.

Table 2-3 lists the system instructions and indicates whether they are available and useful for application
programs. These instructions are described in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volumes 2A, 2B, 2C & 2D.

Vol. 3A 2-21

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions

Useful to Protected from

Instruction Description Application? Application?

LLDT Load LDT Register No Yes
SLDT Store LDT Register No If CR4.UMIP =1
LGDT Load GDT Register No Yes
SGDT Store GDT Register No If CR4.UMIP =1
LTR Load Task Register No Yes

STR Store Task Register No If CR4.UMIP =1
LIDT Load IDT Register No Yes

SIDT Store IDT Register No If CR4.UMIP =1
MOV CRn Load and store control registers No Yes
SMSW Store MSW Yes If CR4.UMIP =1
LMSW Load MSW No Yes

CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes'-> No

LAR Load Access Rights Yes No

LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No

MOV DRn Load and store debug registers No Yes

INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes

HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No

RSM Return from system management mode No Yes
RDMSR3 Read Model-Specific Registers No Yes
WRMSR3 Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC3 Read Time-Stamp Counter Yes Yes?
RDTSCP’ Read Serialized Time-Stamp Counter Yes Yes?

2-22 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Table 2-3. Summary of System Instructions (Contd.)

Useful to Protected from
Instruction Description Application? Application?
XGETBV Return the state of XCRO Yes No
XSETBV Enable one or more processor extended states No® Yes

NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application programs running at a CPL of 3.

3. These instructions were introduced into the IA-32 Architecture with the Pentium processor.

4. This instruction was introduced into the IA-32 Architecture with the Pentium Pro processor and the Pentium processor with MMX technol-
ogy.

5. This instruction is not supported in 64-bit mode.

6. Application uses XGETBV to query which set of processor extended states are enabled.

7.RDTSCP is introduced in Intel Core i7 processor.

2.8.1 Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have a load and store instruction for loading data into and storing
data from the register:

® LGDT (Load GDTR Register) — Loads the GDT base address and limit from memory into the GDTR register.
® SGDT (Store GDTR Register) — Stores the GDT base address and limit from the GDTR register into memory.
® LIDT (Load IDTR Register) — Loads the IDT base address and limit from memory into the IDTR register.

®* SIDT (Store IDTR Register) — Stores the IDT base address and limit from the IDTR register into memory.

® LLDT (Load LDTR Register) — Loads the LDT segment selector and segment descriptor from memory into
the LDTR. (The segment selector operand can also be located in a general-purpose register.)

® SLDT (Store LDTR Register) — Stores the LDT segment selector from the LDTR register into memory or a
general-purpose register.

® LTR (Load Task Register) — Loads segment selector and segment descriptor for a TSS from memory into the
task register. (The segment selector operand can also be located in a general-purpose register.)

® STR (Store Task Register) — Stores the segment selector for the current task TSS from the task register into
memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions operate on bits 0
through 15 of control register CRO. These instructions are provided for compatibility with the 16-bit Intel 286
processor. Programs written to run on 32-bit IA-32 processors should not use these instructions. Instead, they
should access the control register CR0O using the MOV CR instruction.

The CLTS (clear TS flag in CRO) instruction is provided for use in handling a device-not-available exception (#NM)
that occurs when the processor attempts to execute a floating-point instruction when the TS flag is set. This
instruction allows the TS flag to be cleared after the x87 FPU context has been saved, preventing further #NM
exceptions. See Section 2.5, “Control Registers,” for more information on the TS flag.

The control registers (CR0O, CR1, CR2, CR3, CR4, and CR8) are loaded using the MOV instruction. The instruction
loads a control register from a general-purpose register or stores the content of a control register in a general-
purpose register.

2.8.2 Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment descriptors to deter-
mine if access to their associated segments is allowed. These instructions duplicate some of the automatic access
rights and type checking done by the processor, thus allowing operating-system or executive software to prevent
exceptions from being generated.

Vol. 3A 2-23

SYSTEM ARCHITECTURE OVERVIEW

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment selector to match that of
the program or procedure that supplied the segment selector. See Section 5.10.4, “"Checking Caller Access Privi-
leges (ARPL Instruction)” for a detailed explanation of the function and use of this instruction. Note that ARPL is not
supported in 64-bit mode.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and loads access rights
information from the segment’s segment descriptor into a general-purpose register. Software can then examine
the access rights to determine if the segment type is compatible with its intended use. See Section 5.10.1,

“Checking Access Rights (LAR Instruction)” for a detailed explanation of the function and use of this instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and loads the segment
limit from the segment’s segment descriptor into a general-purpose register. Software can then compare the
segment limit with an offset into the segment to determine whether the offset lies within the segment. See Section
5.10.3, “Checking That the Pointer Offset Is Within Limits (LSL Instruction)” for a detailed explanation of the func-
tion and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected segment is readable or
writable, respectively, at a given CPL. See Section 5.10.2, "Checking Read/Write Rights (VERR and VERW Instruc-
tions)” for a detailed explanation of the function and use of these instructions.

2.8.3 Loading and Storing Debug Registers

Internal debugging facilities in the processor are controlled by a set of 8 debug registers (DR0-DR7). The MOV
instruction allows setup data to be loaded to and stored from these registers.

On processors that support Intel 64 architecture, debug registers DRO-DR7 are 64 bits. In 32-bit modes and
compatibility mode, writes to a debug register fill the upper 32 bits with zeros. Reads return the lower 32 bits. In
64-bit mode, the upper 32 bits of DR6-DR7 are reserved and must be written with zeros. Writing one to any of the
upper 32 bits causes an exception, #GP(0).

In 64-bit mode, MOV DRn instructions read or write all 64 bits of a debug register (operand-size prefixes are
ignored). All 64 bits of DRO-DR3 are writable by software. However, MOV DRn instructions do not check that
addresses written to DRO-DR3 are in the limits of the implementation. Address matching is supported only on valid
addresses generated by the processor implementation.

2.84 Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB entries. The INVD
(invalidate cache with no writeback) instruction invalidates all data and instruction entries in the internal caches
and sends a signal to the external caches indicating that they should also be invalidated.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the INVD instruction,
except that it writes back modified lines in its internal caches to memory before it invalidates the caches. After
invalidating the caches local to the executing logical processor or processor core, WBINVD signals caches higher in
the cache hierarchy (caches shared with the invalidating logical processor or core) to write back any data they have
in modified state at the time of instruction execution and to invalidate their contents.

Note, non-shared caches may not be written back nor invalidated. In Figure 2-10 below, if code executing on either
LPO or LP1 were to execute a WBINVD, the shared L1 and L2 for LPO/LP1 will be written back and invalidated as will
the shared L3. However, the L1 and L2 caches not shared with LPO and LP1 will not be written back nor invalidated.

2-24 Vol. 3A

SYSTEM ARCHITECTURE OVERVIEW

Not Written back and

not Invalidated
Logical Processors [LPO | LP1 [LP2 [LP3 |LP4 [LPs [LPe [LP7 | 20

L1 & L2 Cache _ |]
Written back < P

& Invalidated =l

\

Execution Engine

L3 Cache Written back and Invalidated

Uncore

QPI
t

Figure 2-10. WBINVD Invalidation of Shared and Non-Shared Cache Hierarchy

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a specified page.

2.8.5 Controlling the Processor

The HLT (halt processor) instruction stops the processor until an enabled interrupt (such as NMI or SMI, which are
normally enabled), a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal is received. The
processor generates a special bus cycle to indicate that the halt mode has been entered.

Hardware may respond to this signal in a number of ways. An indicator light on the front panel may be turned on.
An NMI interrupt for recording diagnostic information may be generated. Reset initialization may be invoked (note
that the BINIT# pin was introduced with the Pentium Pro processor). If any hon-wake events are pending during

shutdown, they will be handled after the wake event from shutdown is processed (for example, A20M# interrupts).

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a memory operand. This
mechanism is used to allow reliable communications between processors in multiprocessor systems, as described
below:

® In the Pentium processor and earlier IA-32 processors, the LOCK prefix causes the processor to assert the
LOCK# signal during the instruction. This always causes an explicit bus lock to occur.

®* Inthe Pentium 4, Intel Xeon, and P6 family processors, the locking operation is handled with either a cache lock
or bus lock. If a memory access is cacheable and affects only a single cache line, a cache lock is invoked and
the system bus and the actual memory location in system memory are not locked during the operation. Here,
other Pentium 4, Intel Xeon, or P6 family processors on the bus write-back any modified data and invalidate
their caches as necessary to maintain system memory coherency. If the memory access is not cacheable
and/or it crosses a cache line boundary, the processor’s LOCK# signal is asserted and the processor does not
respond to requests for bus control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the state it was in prior to
a system management mode (SMM) interrupt.

2.8.6 Reading Performance-Monitoring and Time-Stamp Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter) instructions allow
application programs to read the processor’s performance-monitoring and time-stamp counters, respectively.
Processors based on Intel NetBurst® microarchitecture have eighteen 40-bit performance-monitoring counters; P6
family processors have two 40-bit counters. Intel® Atom™ processors and most of the processors based on the
Intel Core microarchitecture support two types of performance monitoring counters: programmable performance
counters similar to those available in the P6 family, and three fixed-function performance monitoring counters.

Vol.3A 2-25

SYSTEM ARCHITECTURE OVERVIEW

Details of programmable and fixed-function performance monitoring counters for each processor generation are
described in Chapter 18, “Performance Monitoring”.

The programmable performance counters can support counting either the occurrence or duration of events. Events
that can be monitored on programmable counters generally are model specific (except for architectural perfor-
mance events enumerated by CPUID leaf 0AH); they may include the number of instructions decoded, interrupts
received, or the number of cache loads. Individual counters can be set up to monitor different events. Use the
system instruction WRMSR to set up values in one of the IA32_PERFEVTSELx MSR, in one of the 45 ESCRs and one
of the 18 CCCR MSRs (for Pentium 4 and Intel Xeon processors); or in the PerfEvtSelO or the PerfEvtSell MSR (for
the P6 family processors). The RDPMC instruction loads the current count from the selected counter into the
EDX:EAX registers.

Fixed-function performance counters record only specific events that are defined in Chapter 19, “Performance
Monitoring Events”, and the width/number of fixed-function counters are enumerated by CPUID leaf 0AH.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the processor is reset. If
not reset, the counter will increment ~9.5 x 101 times per year when the processor is operating at a clock rate
of 3GHz. At this clock frequency, it would take over 190 years for the counter to wrap around. The RDTSC
instruction loads the current count of the time-stamp counter into the EDX:EAX registers.

See Section 18.1, “Performance Monitoring Overview,” and Section 17.17, “Time-Stamp Counter,” for more infor-
mation about the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the IA-32 architecture with the Pentium processor. The RDPMC instruc-
tion was introduced into the IA-32 architecture with the Pentium Pro processor and the Pentium processor with
MMX technology. Earlier Pentium processors have two performance-monitoring counters, but they can be read only
with the RDMSR instruction, and only at privilege level 0.

2.8.6.1 Reading Counters in 64-Bit Mode

In 64-bit mode, RDTSC operates the same as in protected mode. The count in the time-stamp counter is stored in
EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

RDPMC requires an index to specify the offset of the performance-monitoring counter. In 64-bit mode for Pentium
4 or Intel Xeon processor families, the index is specified in ECX[30:0]. The current count of the performance-moni-
toring counter is stored in EDX:EAX (or RDX[31:0]:RAX[31:0] with RDX[63:32]:RAX[63:32] cleared).

2.8.7 Reading and Writing Model-Specific Registers

The RDMSR (read model-specific register) and WRMSR (write model-specific register) instructions allow a
processor’s 64-bit model-specific registers (MSRs) to be read and written, respectively. The MSR to be read or
written is specified by the value in the ECX register.

RDMSR reads the value from the specified MSR to the EDX:EAX registers; WRMSR writes the value in the EDX:EAX
registers to the specified MSR. RDMSR and WRMSR were introduced into the IA-32 architecture with the Pentium
processor.

See Section 9.4, “"Model-Specific Registers (MSRs),” for more information.

2.8.7.1 Reading and Writing Model-Specific Registers in 64-Bit Mode

RDMSR and WRMSR require an index to specify the address of an MSR. In 64-bit mode, the index is 32 bits; it is
specified using ECX.

2.8.8 Enabling Processor Extended States

The XSETBYV instruction is required to enable OS support of individual processor extended states in XCRO (see
Section 2.6).

2-26 Vol. 3A

8. Updates to Chapter 3, Volume 3A

Change bars show changes to Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

Change to this chapter: Update to Section 3.4.3 "Segment Registers”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel 64 and IA-32 architecture’s protected-mode memory management facilities,
including the physical memory requirements, segmentation mechanism, and paging mechanism.

See also: Chapter 5, “Protection” (for a description of the processor’s protection mechanism) and Chapter 20,
“8086 Emulation” (for a description of memory addressing protection in real-address and virtual-8086 modes).

3.1 MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the IA-32 architecture are divided into two parts: segmentation and paging.
Segmentation provides a mechanism of isolating individual code, data, and stack modules so that multiple
programs (or tasks) can run on the same processor without interfering with one another. Paging provides a mech-
anism for implementing a conventional demand-paged, virtual-memory system where sections of a program'’s
execution environment are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be used. There is
no mode bit to disable segmentation. The use of paging, howeuver, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-program (or single-
task) systems, multitasking systems, or multiple-processor systems that used shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s addressable memory
space (called the linear address space) into smaller protected address spaces called segments. Segments can
be used to hold the code, data, and stack for a program or to hold system data structures (such as a TSS or LDT).
If more than one program (or task) is running on a processor, each program can be assigned its own set of
segments. The processor then enforces the boundaries between these segments and insures that one program
does not interfere with the execution of another program by writing into the other program’s segments. The
segmentation mechanism also allows typing of segments so that the operations that may be performed on a partic-
ular type of segment can be restricted.

All the segments in a system are contained in the processor’s linear address space. To locate a byte in a particular
segment, a logical address (also called a far pointer) must be provided. A logical address consists of a segment
selector and an offset. The segment selector is a unique identifier for a segment. Among other things it provides an
offset into a descriptor table (such as the global descriptor table, GDT) to a data structure called a segment
descriptor. Each segment has a segment descriptor, which specifies the size of the segment, the access rights and
privilege level for the segment, the segment type, and the location of the first byte of the segment in the linear
address space (called the base address of the segment). The offset part of the logical address is added to the base
address for the segment to locate a byte within the segment. The base address plus the offset thus forms a linear
address in the processor’s linear address space.

Vol. 3A 3-1

PROTECTED-MODE MEMORY MANAGEMENT

Logical Address
(or Far Pointer)

Segment l

Selector Offset Linear Address
| | | | Space
; Linear Address
Global Descriptor - .
Table (GDT) Dir | Table | Offset | Zr&;és“uecsasl
Space
Segment
Segment Page Table Page
Descriptor(— | | (|| || || r~""""7
Bl N T R i Page Directory Phy. Addr.
ﬂ|—> Lin. Addr. Eniry s
A Entry >

SegmentJ g

Base Address

|~— Page

}7 Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the physical address space
of processor. The physical address space is defined as the range of addresses that the processor can generate on
its address bus.

Because multitasking computing systems commonly define a linear address space much larger than it is economi-
cally feasible to contain all at once in physical memory, some method of “virtualizing” the linear address space is
needed. This virtualization of the linear address space is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated with a small
amount of physical memory (RAM and ROM) and some disk storage. When using paging, each segment is divided
into pages (typically 4 KBytes each in size), which are stored either in physical memory or on the disk. The oper-
ating system or executive maintains a page directory and a set of page tables to keep track of the pages. When a
program (or task) attempts to access an address location in the linear address space, the processor uses the page
directory and page tables to translate the linear address into a physical address and then performs the requested
operation (read or write) on the memory location.

If the page being accessed is not currently in physical memory, the processor interrupts execution of the program
(by generating a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of pages between phys-
ical memory and the disk is transparent to the correct execution of a program. Even programs written for 16-bit IA-
32 processors can be paged (transparently) when they are run in virtual-8086 mode.

3.2 USING SEGMENTS

The segmentation mechanism supported by the IA-32 architecture can be used to implement a wide variety of
system designs. These designs range from flat models that make only minimal use of segmentation to protect

3-2 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

programs to multi-segmented models that employ segmentation to create a robust operating environment in
which multiple programs and tasks can be executed reliably.

The following sections give several examples of how segmentation can be employed in a system to improve
memory management performance and reliability.

3.2.1 Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating system and application

programs have access to a continuous, unsegmented address space. To the greatest extent possible, this basic flat
model hides the segmentation mechanism of the architecture from both the system designer and the application

programmer.

To implement a basic flat memory model with the IA-32 architecture, at least two segment descriptors must be
created, one for referencing a code segment and one for referencing a data segment (see Figure 3-2). Both of
these segments, however, are mapped to the entire linear address space: that is, both segment descriptors have
the same base address value of 0 and the same segment limit of 4 GBytes. By setting the segment limit to 4
GBytes, the segmentation mechanism is kept from generating exceptions for out of limit memory references, even
if no physical memory resides at a particular address. ROM (EPROM) is generally located at the top of the physical
address space, because the processor begins execution at FFFF_FFFOH. RAM (DRAM) is placed at the bottom of the
address space because the initial base address for the DS data segment after reset initialization is 0.

3.2.2 Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to include only the
range of addresses for which physical memory actually exists (see Figure 3-3). A general-protection exception
(#GP) is then generated on any attempt to access nonexistent memory. This model provides a minimum level of
hardware protection against some kinds of program bugs.

Linear Address Space
(or Physical Memory)

FS
GS

Segment >

Registers Code FFFFFFFFH
Code- and Data-Segment

Descriptors
Not Present
I T

Access Limit Data and
Base Address | > Stack 0

Figure 3-2. Flat Model

Vol. 3A 3-3

PROTECTED-MODE MEMORY MANAGEMENT

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imit ——>
Registers Access Limit Code FFFEFFFFH
Base Address E—

S
Not Present

. Memory 1/0
Access Limit J

D Base Address

Data and
Stack

»
Al

GS 0

L
’ o

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For example, for the paging
mechanism to provide isolation between user and supervisor code and data, four segments need to be defined:
code and data segments at privilege level 3 for the user, and code and data segments at privilege level O for the
supervisor. Usually these segments all overlay each other and start at address 0 in the linear address space. This
flat segmentation model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applications from each other.
Similar designs are used by several popular multitasking operating systems.

3.2.3 Multi-Segment Model

A multi-segment model (such as the one shown in Figure 3-4) uses the full capabilities of the segmentation mech-
anism to provide hardware enforced protection of code, data structures, and programs and tasks. Here, each
program (or task) is given its own table of segment descriptors and its own segments. The segments can be
completely private to their assigned programs or shared among programs. Access to all segments and to the
execution environments of individual programs running on the system is controlled by hardware.

3-4 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
IC—l—Sl > Access \ Limit
Base Address Stack
Access [Limit \

Y

[ss]

Base Address

Access [Limit
DS >
Base Address Code
E - Access \ Limit
Base Address
Data
E > Access \ Limit
Base Address
Data
Access \ Limit
GS >
: Base Address
— Data
Access \ Limit
Base Address A
Access \ Limit
Base Address
Data

Access [Limit
Base Address

Access \ Limit

Base Address T
Figure 3-4. Multi-Segment Model

Access checks can be used to protect not only against referencing an address outside the limit of a segment, but
also against performing disallowed operations in certain segments. For example, since code segments are desig-
nated as read-only segments, hardware can be used to prevent writes into code segments. The access rights infor-
mation created for segments can also be used to set up protection rings or levels. Protection levels can be used to
protect operating-system procedures from unauthorized access by application programs.

3.24 Segmentation in IA-32e Mode

In IA-32e mode of Intel 64 architecture, the effects of segmentation depend on whether the processor is running
in compatibility mode or 64-bit mode. In compatibility mode, segmentation functions just as it does using legacy
16-bit or 32-bit protected mode semantics.

In 64-bit mode, segmentation is generally (but not completely) disabled, creating a flat 64-bit linear-address
space. The processor treats the segment base of CS, DS, ES, SS as zero, creating a linear address that is equal to
the effective address. The FS and GS segments are exceptions. These segment registers (which hold the segment
base) can be used as additional base registers in linear address calculations. They facilitate addressing local data
and certain operating system data structures.

Note that the processor does not perform segment limit checks at runtime in 64-bit mode.

3.25 Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4. The processor’s
paging mechanism divides the linear address space (into which segments are mapped) into pages (as shown in
Figure 3-1). These linear-address-space pages are then mapped to pages in the physical address space. The
paging mechanism offers several page-level protection facilities that can be used with or instead of the segment-

Vol. 3A 3-5

PROTECTED-MODE MEMORY MANAGEMENT

protection facilities. For example, it lets read-write protection be enforced on a page-by-page basis. The paging
mechanism also provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3 PHYSICAL ADDRESS SPACE

In protected mode, the IA-32 architecture provides a normal physical address space of 4 GBytes (232bytes). This
is the address space that the processor can address on its address bus. This address space is flat (unsegmented),
with addresses ranging continuously from 0 to FFFFFFFFH. This physical address space can be mapped to read-
write memory, read-only memory, and memory mapped I/O. The memory mapping facilities described in this
chapter can be used to divide this physical memory up into segments and/or pages.

Starting with the Pentium Pro processor, the IA-32 architecture also supports an extension of the physical address
space to 236 bytes (64 GBytes); with a maximum physical address of FFFFFFFFFH. This extension is invoked in
either of two ways:

® Using the physical address extension (PAE) flag, located in bit 5 of control register CR4.
® Using the 36-bit page size extension (PSE-36) feature (introduced in the Pentium Ill processors).

Physical address support has since been extended beyond 36 bits. See Chapter 4, “Paging” for more information
about 36-bit physical addressing.

3.3.1 Intel® 64 Processors and Physical Address Space

On processors that support Intel 64 architecture (CPUID.80000001H:EDX[29] = 1), the size of the physical
address range is implementation-specific and indicated by CPUID.80000008H:EAX[bits 7-0].

For the format of information returned in EAX, see "CPUID—CPU Identification” in Chapter 3 of the Intel® 64 and
I1A-32 Architectures Software Developer’s Manual, Volume 2A. See also: Chapter 4, “Paging.”

3.4 LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address translation to arrive
at a physical address: logical-address translation and linear address space paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessed with a logical
address. A logical address consists of a 16-bit segment selector and a 32-bit offset (see Figure 3-5). The segment
selector identifies the segment the byte is located in and the offset specifies the location of the byte in the segment
relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit address in the
processor’s linear address space. Like the physical address space, the linear address space is a flat (unsegmented),
232_pyte address space, with addresses ranging from 0 to FFFFFFFFH. The linear address space contains all the
segments and system tables defined for a system.

To translate a logical address into a linear address, the processor does the following:

1. Uses the offset in the segment selector to locate the segment descriptor for the segment in the GDT or LDT and
reads it into the processor. (This step is needed only when a new segment selector is loaded into a segment
register.)

2. Examines the segment descriptor to check the access rights and range of the segment to insure that the
segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a linear address.

3-6 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

15 0 31(63) 0
Seg. Selector | Offset (Effective Address) |

Logical
Address

Descriptor Table

Segment

Base Address
H R — . s +
Descriptor .

31(63) 0
Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that is, the linear
address goes out on the processor’s address bus). If the linear address space is paged, a second level of address
translation is used to translate the linear address into a physical address.

See also: Chapter 4, “Paging.”

3.4.1 Logical Address Translation in IA-32e Mode

In IA-32e mode, an Intel 64 processor uses the steps described above to translate a logical address to a linear
address. In 64-bit mode, the offset and base address of the segment are 64-bits instead of 32 bits. The linear
address format is also 64 bits wide and is subject to the canonical form requirement.

Each code segment descriptor provides an L bit. This bit allows a code segment to execute 64-bit code or legacy
32-bit code by code segment.

34.2 Segment Selectors

A segment selector is a 16-bit identifier for a segment (see Figure 3-6). It does not point directly to the segment,
but instead points to the segment descriptor that defines the segment. A segment selector contains the following
items:

Index (Bits 3 through 15) — Selects one of 8192 descriptors in the GDT or LDT. The processor multiplies
the index value by 8 (the number of bytes in a segment descriptor) and adds the result to the base
address of the GDT or LDT (from the GDTR or LDTR register, respectively).

Tl (table indicator) flag
(Bit 2) — Specifies the descriptor table to use: clearing this flag selects the GDT; setting this flag
selects the current LDT.

15 3210
Index ‘”RPL|

Table Indicator
0=GDT
1=LDT

Requested Privilege Level (RPL)

Figure 3-6. Segment Selector

Vol. 3A 3-7

PROTECTED-MODE MEMORY MANAGEMENT

Requested Privilege Level (RPL)
(Bits 0 and 1) — Specifies the privilege level of the selector. The privilege level can range from 0 to
3, with 0 being the most privileged level. See Section 5.5, “Privilege Levels”, for a description of the
relationship of the RPL to the CPL of the executing program (or task) and the descriptor privilege
level (DPL) of the descriptor the segment selector points to.

The first entry of the GDT is not used by the processor. A segment selector that points to this entry of the GDT (that
is, a segment selector with an index of 0 and the TI flag set to 0) is used as a “null segment selector.” The processor
does not generate an exception when a segment register (other than the CS or SS registers) is loaded with a null
selector. It does, however, generate an exception when a segment register holding a null selector is used to access
memory. A null selector can be used to initialize unused segment registers. Loading the CS or SS register with a null
segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values of selectors are
usually assigned or modified by link editors or linking loaders, not application programs.

343 Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for holding up to 6
segment selectors (see Figure 3-7). Each of these segment registers support a specific kind of memory reference
(code, stack, or data). For virtually any kind of program execution to take place, at least the code-segment (CS),
data-segment (DS), and stack-segment (SS) registers must be loaded with valid segment selectors. The processor
also provides three additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loaded in one of the
segment registers. So, although a system can define thousands of segments, only 6 can be available forimmediate
use. Other segments can be made available by loading their segment selectors into these registers during program
execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes referred to as a
“descriptor cache” or a “shadow register.”) When a segment selector is loaded into the visible part of a segment
register, the processor also loads the hidden part of the segment register with the base address, segment limit, and
access control information from the segment descriptor pointed to by the segment selector. The information cached
in the segment register (visible and hidden) allows the processor to translate addresses without taking extra bus
cycles to read the base address and limit from the segment descriptor. In systems in which multiple processors
have access to the same descriptor tables, it is the responsibility of software to reload the segment registers when
the descriptor tables are modified. If this is not done, an old segment descriptor cached in a segment register might
be used after its memory-resident version has been modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instructions. These instructions
explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET instructions, the SYSENTER
and SYSEXIT instructions, and the IRET, INT n, INTO, INT3, and INT1 instructions. These instructions change

3-8 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

the contents of the CS register (and sometimes other segment registers) as an incidental part of their
operation.

The MOV instruction can also be used to store the visible part of a segment register in a general-purpose register.

344 Segment Loading Instructions in IA-32e Mode

Because ES, DS, and SS segment registers are not used in 64-bit mode, their fields (base, limit, and attribute) in
segment descriptor registers are ignored. Some forms of segment load instructions are also invalid (for example,
LDS, POP ES). Address calculations that reference the ES, DS, or SS segments are treated as if the segment base
is zero.

The processor checks that all linear-address references are in canonical form instead of performing limit checks.
Mode switching does not change the contents of the segment registers or the associated descriptor registers.
These registers are also not changed during 64-bit mode execution, unless explicit segment loads are performed.

In order to set up compatibility mode for an application, segment-load instructions (MOV to Sreg, POP Sreg) work
normally in 64-bit mode. An entry is read from the system descriptor table (GDT or LDT) and is loaded in the hidden
portion of the segment register. The descriptor-register base, limit, and attribute fields are all loaded. However, the
contents of the data and stack segment selector and the descriptor registers are ignored.

When FS and GS segment overrides are used in 64-bit mode, their respective base addresses are used in the linear
address calculation: (FS or GS).base + index + displacement. FS.base and GS.base are then expanded to the full
linear-address size supported by the implementation. The resulting effective address calculation can wrap across
positive and negative addresses; the resulting linear address must be canonical.

In 64-bit mode, memory accesses using FS-segment and GS-segment overrides are not checked for a runtime limit
nor subjected to attribute-checking. Normal segment loads (MOV to Sreg and POP Sreg) into FS and GS load a
standard 32-bit base value in the hidden portion of the segment register. The base address bits above the standard
32 bits are cleared to 0 to allow consistency for implementations that use less than 64 bits.

The hidden descriptor register fields for FS.base and GS.base are physically mapped to MSRs in order to load all
address bits supported by a 64-bit implementation. Software with CPL = 0 (privileged software) can load all
supported linear-address bits into FS.base or GS.base using WRMSR. Addresses written into the 64-bit FS.base
and GS.base registers must be in canonical form. A WRMSR instruction that attempts to write a non-canonical
address to those registers causes a #GP fault.

When in compatibility mode, FS and GS overrides operate as defined by 32-bit mode behavior regardless of the
value loaded into the upper 32 linear-address bits of the hidden descriptor register base field. Compatibility mode
ignores the upper 32 bits when calculating an effective address.

A new 64-bit mode instruction, SWAPGS, can be used to load GS base. SWAPGS exchanges the kernel data struc-
ture pointer from the IA32_KERNEL_GS_BASE MSR with the GS base register. The kernel can then use the GS
prefix on normal memory references to access the kernel data structures. An attempt to write a non-canonical
value (using WRMSR) to the IA32_KERNEL_GS_BASE MSR causes a #GP fault.

3.4.5 Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the size and location of
a segment, as well as access control and status information. Segment descriptors are typically created by
compilers, linkers, loaders, or the operating system or executive, but not application programs. Figure 3-8 illus-
trates the general descriptor format for all types of segment descriptors.

Vol. 3A 3-9

PROTECTED-MODE MEMORY MANAGEMENT

31 242322212019 161514 1312 11 8 7 0
D A| Seg. D
Base 31:24 G|/ |L|v| Limt [Pl P |S| Type Base 23:16 4
B L| 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — 64-bit code segment (IA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

The flags and fields in a segment descriptor are as follows:

Segment limit field

Specifies the size of the segment. The processor puts together the two segment limit fields to form
a 20-bit value. The processor interprets the segment limit in one of two ways, depending on the
setting of the G (granularity) flag:

e If the granularity flag is clear, the segment size can range from 1 byte to 1 MByte, in byte incre-
ments.

e If the granularity flag is set, the segment size can range from 4 KBytes to 4 GBytes, in 4-KByte
increments.

The processor uses the segment limit in two different ways, depending on whether the segment is
an expand-up or an expand-down segment. See Section 3.4.5.1, "Code- and Data-Segment
Descriptor Types”, for more information about segment types. For expand-up segments, the offset
in a logical address can range from 0 to the segment limit. Offsets greater than the segment limit
generate general-protection exceptions (#GP, for all segments other than SS) or stack-fault excep-
tions (#SS for the SS segment). For expand-down segments, the segment limit has the reverse
function; the offset can range from the segment limit plus 1 to FFFFFFFFH or FFFFH, depending on
the setting of the B flag. Offsets less than or equal to the segment limit generate general-protection
exceptions or stack-fault exceptions. Decreasing the value in the segment limit field for an expand-
down segment allocates new memory at the bottom of the segment's address space, rather than at
the top. IA-32 architecture stacks always grow downwards, making this mechanism convenient for
expandable stacks.

Base address fields

Type field

3-10 Vol. 3A

Defines the location of byte 0 of the segment within the 4-GByte linear address space. The
processor puts together the three base address fields to form a single 32-bit value. Segment base
addresses should be aligned to 16-byte boundaries. Although 16-byte alignment is not required,
this alignment allows programs to maximize performance by aligning code and data on 16-byte
boundaries.

Indicates the segment or gate type and specifies the kinds of access that can be made to the
segment and the direction of growth. The interpretation of this field depends on whether the
descriptor type flag specifies an application (code or data) descriptor or a system descriptor. The
encoding of the type field is different for code, data, and system descriptors (see Figure 5-1). See
Section 3.4.5.1, "Code- and Data-Segment Descriptor Types”, for a description of how this field is
used to specify code and data-segment types.

PROTECTED-MODE MEMORY MANAGEMENT

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is clear) or a code or data
segment (S flag is set).

DPL (descriptor privilege level) field
Specifies the privilege level of the segment. The privilege level can range from 0 to 3, with 0 being
the most privileged level. The DPL is used to control access to the segment. See Section 5.5, “Priv-
ilege Levels”, for a description of the relationship of the DPL to the CPL of the executing code
segment and the RPL of a segment selector.

P (segment-present) flag
Indicates whether the segment is present in memory (set) or not present (clear). If this flag is clear,
the processor generates a segment-not-present exception (#NP) when a segment selector that
points to the segment descriptor is loaded into a segment register. Memory management software
can use this flag to control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present flag is clear. When
this flag is clear, the operating system or executive is free to use the locations marked “Available” to
store its own data, such as information regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag
Performs different functions depending on whether the segment descriptor is an executable code
segment, an expand-down data segment, or a stack segment. (This flag should always be set to 1
for 32-bit code and data segments and to O for 16-bit code and data segments.)

e Executable code segment. The flag is called the D flag and it indicates the default length for
effective addresses and operands referenced by instructions in the segment. If the flag is set,
32-bit addresses and 32-bit or 8-bit operands are assumed; if it is clear, 16-bit addresses and
16-bit or 8-bit operands are assumed.

The instruction prefix 66H can be used to select an operand size other than the default, and the
prefix 67H can be used select an address size other than the default.

e Stack segment (data segment pointed to by the SS register). The flag is called the B (big)
flag and it specifies the size of the stack pointer used for implicit stack operations (such as
pushes, pops, and calls). If the flag is set, a 32-bit stack pointer is used, which is stored in the
32-bit ESP register; if the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-
bit SP register. If the stack segment is set up to be an expand-down data segment (described in
the next paragraph), the B flag also specifies the upper bound of the stack segment.

¢ Expand-down data segment. The flag is called the B flag and it specifies the upper bound of
the segment. If the flag is set, the upper bound is FFFFFFFFH (4 GBytes); if the flag is clear, the
upper bound is FFFFH (64 KBytes).

31 161514 1312 11 8 7 0
Available o P |S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag
Determines the scaling of the segment limit field. When the granularity flag is clear, the segment
limit is interpreted in byte units; when flag is set, the segment limit is interpreted in 4-KByte units.
(This flag does not affect the granularity of the base address; it is always byte granular.) When the
granularity flag is set, the twelve least significant bits of an offset are not tested when checking the

Vol. 3A 3-11

PROTECTED-MODE MEMORY MANAGEMENT

offset against the segment limit. For example, when the granularity flag is set, a limit of 0 results in
valid offsets from 0 to 4095.

L (64-bit code segment) flag
In IA-32e mode, bit 21 of the second doubleword of the segment descriptor indicates whether a
code segment contains native 64-bit code. A value of 1 indicates instructions in this code segment
are executed in 64-bit mode. A value of 0 indicates the instructions in this code segment are
executed in compatibility mode. If L-bit is set, then D-bit must be cleared. When not in IA-32e mode
or for non-code segments, bit 21 is reserved and should always be set to 0.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use by system software.

3.4.5.1 Code- and Data-Segment Descriptor Types

When the S (descriptor type) flag in a segment descriptor is set, the descriptor is for either a code or a data
segment. The highest order bit of the type field (bit 11 of the second double word of the segment descriptor) then
determines whether the descriptor is for a data segment (clear) or a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as accessed (A),
write-enable (W), and expansion-direction (E). See Table 3-1 for a description of the encoding of the bits in the
type field for code and data segments. Data segments can be read-only or read/write segments, depending on the
setting of the write-enable bit.

Table 3-1. Code- and Data-Segment Types

Type Field Descriptor Description
Decimal 11 10 9 8 Type
€ W A
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
1 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read, conforming
15 1 1 1 1 Code Execute/Read, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register with a segment
selector for a nonwritable data segment generates a general-protection exception (#GP). If the size of a stack
segment needs to be changed dynamically, the stack segment can be an expand-down data segment (expansion-
direction flag set). Here, dynamically changing the segment limit causes stack space to be added to the bottom of

3-12 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

the stack. If the size of a stack segment is intended to remain static, the stack segment may be either an expand-
up or expand-down type.

The accessed bit indicates whether the segment has been accessed since the last time the operating-system or
executive cleared the bit. The processor sets this bit whenever it loads a segment selector for the segment into a
segment register, assuming that the type of memory that contains the segment descriptor supports processor
writes. The bit remains set until explicitly cleared. This bit can be used both for virtual memory management and
for debugging.

For code segments, the three low-order bits of the type field are interpreted as accessed (A), read enable (R), and
conforming (C). Code segments can be execute-only or execute/read, depending on the setting of the read-enable
bit. An execute/read segment might be used when constants or other static data have been placed with instruction
code in a ROM. Here, data can be read from the code segment either by using an instruction with a CS override
prefix or by loading a segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS
registers). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into a more-privileged
conforming segment allows execution to continue at the current privilege level. A transfer into a nonconforming
segment at a different privilege level results in a general-protection exception (#GP), unless a call gate or task gate
is used (see Section 5.8.1, “"Direct Calls or Jumps to Code Segments”, for more information on conforming and
nonconforming code segments). System utilities that do not access protected facilities and handlers for some types
of exceptions (such as, divide error or overflow) may be loaded in conforming code segments. Utilities that need to
be protected from less privileged programs and procedures should be placed in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged (numerically higher
privilege level) code segment, regardless of whether the target segment is a conforming or
nonconforming code segment. Attempting such an execution transfer will result in a general-
protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged programs or proce-
dures (code executing at numerically higher privilege levels). Unlike code segments, however, data segments can
be accessed by more privileged programs or procedures (code executing at numerically lower privilege levels)
without using a special access gate.

If the segment descriptors in the GDT or an LDT are placed in ROM, the processor can enter an indefinite loop if
software or the processor attempts to update (write to) the ROM-based segment descriptors. To prevent this
problem, set the accessed bits for all segment descriptors placed in a ROM. Also, remove operating-system or
executive code that attempts to modify segment descriptors located in ROM.

3.5 SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system descriptor. The
processor recognizes the following types of system descriptors:

®* Local descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® Call-gate descriptor.

®* Interrupt-gate descriptor.

®* Trap-gate descriptor.

®* Task-gate descriptor.

These descriptor types fall into two categories: system-segment descriptors and gate descriptors. System-
segment descriptors point to system segments (LDT and TSS segments). Gate descriptors are in themselves
“gates,” which hold pointers to procedure entry points in code segments (call, interrupt, and trap gates) or which
hold segment selectors for TSS’s (task gates).

Vol.3A 3-13

PROTECTED-MODE MEMORY MANAGEMENT

Table 3-2 shows the encoding of the type field for system-segment descriptors and gate descriptors. Note that
system descriptors in IA-32e mode are 16 bytes instead of 8 bytes.

Table 3-2. System-Segment and Gate-Descriptor Types

Type Field Description
Decimal 11 10 9 8 32-Bit Mode IA-32e Mode

0 0 0 0 0 Reserved Reserved

1 0 0 0 1 16-bit TSS (Available) Reserved

2 0 0 1 0 LDT LDT

3 0 0 1 1 16-bit TSS (Busy) Reserved

4 0 1 0 0 16-bit Call Gate Reserved

5 0 1 0 1 Task Gate Reserved

6 0 1 1 0 16-bit Interrupt Gate Reserved

7 0 1 1 1 16-bit Trap Gate Reserved

8 1 0 0 0 Reserved Reserved

9 1 0 0 1 32-bit TSS (Available) 64-bit TSS (Available)
10 1 0 1 0 Reserved Reserved
11 1 0 1 1 32-bit TSS (Busy) 64-bit TSS (Busy)
12 1 1 0 0 32-bit Call Gate 64-bit Call Gate
13 1 1 0 1 Reserved Reserved
14 1 1 1 0 32-bit Interrupt Gate 64-bit Interrupt Gate
15 1 1 1 1 32-bit Trap Gate 64-bit Trap Gate

See also: Section 3.5.1, "Segment Descriptor Tables”, and Section 7.2.2, “TSS Descriptor” (for more information
on the system-segment descriptors); see Section 5.8.3, “Call Gates”, Section 6.11, “IDT Descriptors”, and Section
7.2.5, “Task-Gate Descriptor” (for more information on the gate descriptors).

3.5.1 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (see Figure 3-10). A descriptor table is variable in
length and can contain up to 8192 (2 3) 8-byte descriptors. There are two kinds of descriptor tables:

® The global descriptor table (GDT)
® The local descriptor tables (LDT)

3-14 Vol. 3A

PROTECTED-MODE MEMORY MANAGEMENT

Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
N ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for all programs and tasks in the system. Optionally,
one or more LDTs can be defined. For example, an LDT can be defined for each separate task being run, or some or
all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in linear address space. The base linear address and
limit of the GDT must be loaded into the GDTR register (see Section 2.4, "Memory-Management Registers”). The

base address of the GDT should be aligned on an eight-byte boundary to yield the best processor performance. The
limit value for the GDT is expressed in bytes. As with segments, the limit value is added to the base address to get
the address of the last valid byte. A limit value of 0 results in exactly one valid byte. Because segment descriptors
are always 8 bytes long, the GDT limit should always be one less than an integral multiple of eight (that is, 8N - 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null descriptor” does not
generate an exception when loaded into a data-segment register (DS, ES, FS, or GS), but it always generates a
general-protection exception (#GP) when an attempt is made to access memory using the descriptor. By initializing
the segment registers with this segment selector, accidental reference to unused segment registers can be guar-
anteed to generate an exception.

The LDT is located in a system segment of the LDT type. The GDT must contain a segment descriptor for the LDT
segment. If the system supports multiple LDTs, each must have a separate segment selector and segment
descriptor in the GDT. The segment descriptor for an LDT can be located anywhere in the GDT. See Section 3.5,
“System Descriptor Types”, for information on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing the LDT, the
segment selector, base linear address, limit, and access rights of the LDT are stored in the LDTR register (see
Section 2.4, "Memory-Management Registers”).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor” is stored in memory
(see top diagram in Figure 3-11). To avoid alignment check faults in user mode (privilege level 3), the pseudo-
descriptor should be located at an odd word address (that is, address MOD 4 is equal to 2). This causes the

Vol.3A 3-15

PROTECTED-MODE MEMORY MANAGEMENT

processor to store an aligned word, followed by an aligned doubleword. User-mode programs normally do not store
pseudo-descriptors, but the possibility of generating an alignment check fault can be avoided by aligning pseudo-
descriptors in this way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLDT or STR instruction, respectively), the pseudo-
descriptor should be located at a doubleword address (that is, address MOD 4 is equal to 0).

a7 16 15 0
| 32-bitBase Address | Limit |

79 16 15 0
| 64-bitBase Address | Limit |

Figure 3-11. Pseudo-Descriptor Formats

3.5.2 Segment Descriptor Tables in IA-32e Mode

In IA-32e mode, a segment descriptor table can contain up to 8192 (213) 8-byte descriptors. An entry in the
segment descriptor table can be 8 bytes. System descriptors are expanded to 16 bytes (occupying the space of two

entries).

GDTR and LDTR registers are expanded to hold 64-bit base address. The corresponding pseudo-descriptor is 80
bits. (see the bottom diagram in Figure 3-11).

The following system descriptors expand to 16 bytes:
— Call gate descriptors (see Section 5.8.3.1, "IA-32e Mode Call Gates”)
— IDT gate descriptors (see Section 6.14.1, “64-Bit Mode IDT")
— LDT and TSS descriptors (see Section 7.2.3, “"TSS Descriptor in 64-bit mode”).

3-16 Vol. 3A

9. Updates to Chapter 6, Volume 3A

Change bars show changes to Chapter 6 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

Changes to this chapter: Update to Table 6-1 “Protected-Mode Exceptions and Interrupts”. Updates to Section
6.4.2 “Software-Generated Exceptions”, Section 6.8.1 “Masking Maskable Hardware Interrupts”, Section 6.8.2
“Masking Instruction Breakpoints”, Section 6.8.3 “"Masking Exceptions and Interrupts When Switching Stacks”,
Section 6.12.1.1 “Protection of Exception- and Interrupt-Handler Procedures”, Section 6.12.1.2 “Flag Usage By
Exception- or Interrupt-Handler Procedure”, and Section 6.13 “Error Code”. Updates to Interrupt 1—Debug
Exception (#DB), Interrupt 3—Breakpoint Exception (#BP), and Interrupt 6—Invalid Opcode Exception (#UD).

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

CHAPTER 6
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the interrupt and exception-handling mechanism when operating in protected mode on an
Intel 64 or IA-32 processor. Most of the information provided here also applies to interrupt and exception mecha-
nisms used in real-address, virtual-8086 mode, and 64-bit mode.

Chapter 20, “"8086 Emulation,” describes information specific to interrupt and exception mechanisms in real-
address and virtual-8086 mode. Section 6.14, “Exception and Interrupt Handling in 64-bit Mode,” describes infor-
mation specific to interrupt and exception mechanisms in IA-32e mode and 64-bit sub-mode.

6.1 INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are events that indicate that a condition exists somewhere in the system, the processor,
or within the currently executing program or task that requires the attention of a processor. They typically result in
a forced transfer of execution from the currently running program or task to a special software routine or task
called an interrupt handler or an exception handler. The action taken by a processor in response to an interrupt or
exception is referred to as servicing or handling the interrupt or exception.

Interrupts occur at random times during the execution of a program, in response to signals from hardware. System
hardware uses interrupts to handle events external to the processor, such as requests to service peripheral devices.
Software can also generate interrupts by executing the INT n instruction.

Exceptions occur when the processor detects an error condition while executing an instruction, such as division by
zero. The processor detects a variety of error conditions including protection violations, page faults, and internal
machine faults. The machine-check architecture of the Pentium 4, Intel Xeon, P6 family, and Pentium processors
also permits a machine-check exception to be generated when internal hardware errors and bus errors are
detected.

When an interrupt is received or an exception is detected, the currently running procedure or task is suspended
while the processor executes an interrupt or exception handler. When execution of the handler is complete, the
processor resumes execution of the interrupted procedure or task. The resumption of the interrupted procedure or
task happens without loss of program continuity, unless recovery from an exception was not possible or an inter-
rupt caused the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when operating in protected
mode. A description of the exceptions and the conditions that cause them to be generated is given at the end of this
chapter.

6.2 EXCEPTION AND INTERRUPT VECTORS

To aid in handling exceptions and interrupts, each architecturally defined exception and each interrupt condition
requiring special handling by the processor is assigned a unique identification number, called a vector number. The
processor uses the vector number assigned to an exception or interrupt as an index into the interrupt descriptor
table (IDT). The table provides the entry point to an exception or interrupt handler (see Section 6.10, “Interrupt
Descriptor Table (IDT)").

The allowable range for vector numbers is 0 to 255. Vector numbers in the range 0 through 31 are reserved by the
Intel 64 and IA-32 architectures for architecture-defined exceptions and interrupts. Not all of the vector numbers
in this range have a currently defined function. The unassigned vector numbers in this range are reserved. Do not
use the reserved vector numbers.

Vector numbers in the range 32 to 255 are designated as user-defined interrupts and are not reserved by the Intel
64 and IA-32 architecture. These interrupts are generally assigned to external I/O devices to enable those devices
to send interrupts to the processor through one of the external hardware interrupt mechanisms (see Section 6.3,
“Sources of Interrupts”).

Vol. 3A 6-1

INTERRUPT AND EXCEPTION HANDLING

Table 6-1 shows vector number assignments for architecturally defined exceptions and for the NMI interrupt. This
table gives the exception type (see Section 6.5, “"Exception Classifications”) and indicates whether an error code is
saved on the stack for the exception. The source of each predefined exception and the NMI interrupt is also given.

6.3 SOURCES OF INTERRUPTS

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.
® Software-generated interrupts.

6.3.1 External Interrupts

External interrupts are received through pins on the processor or through the local APIC. The primary interrupt pins
on Pentium 4, Intel Xeon, P6 family, and Pentium processors are the LINT[1:0] pins, which are connected to the
local APIC (see Chapter 10, "Advanced Programmable Interrupt Controller (APIC)”). When the local APIC is
enabled, the LINT[1:0] pins can be programmed through the APIC's local vector table (LVT) to be associated with
any of the processor’s exception or interrupt vectors.

When the local APIC is global/hardware disabled, these pins are configured as INTR and NMI pins, respectively.
Asserting the INTR pin signals the processor that an external interrupt has occurred. The processor reads from the
system bus the interrupt vector number provided by an external interrupt controller, such as an 8259A (see Section
6.2, “Exception and Interrupt Vectors”). Asserting the NMI pin signals a hon-maskable interrupt (NMI), which is
assigned to interrupt vector 2.

Table 6-1. Protected-Mode Exceptions and Interrupts

Vector Mne- Description Type Error Source
monic Code

0 #DE Divide Error Fault No DIV and IDIV instructions.

1 #DB Debug Exception Fault/ Trap No Instruction, data, and I/0 breakpoints;
single-step; and others.

2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.

3 #BP Breakpoint Trap No INT3 instruction.

4 #OF Overflow Trap No INTO instruction.

5 #BR BOUND Range Exceeded Fault No BOUND instruction.

6 #UD Invalid Opcode (Undefined Opcode) | Fault No UD instruction or reserved opcode.

7 #NM Device Not Available (No Math Fault No Floating-point or WAIT/FWAIT instruction.

Coprocessor)
8 #DF Double Fault Abort Yes Any instruction that can generate an
(zero) exception, an NMI, or an INTR.
9 Coprocessor Segment Overrun Fault No Floating-point instruction.!
(reserved)

10 #TS Invalid TSS Fault Yes Task switch or TSS access.

11 #NP Segment Not Present Fault Yes Loading segment registers or accessing
system segments.

12 #SS Stack-Segment Fault Fault Yes Stack operations and SS register loads.

13 #GP General Protection Fault Yes Any memory reference and other
protection checks.

14 #PF Page Fault Fault Yes Any memory reference.

6-2 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-1. Protected-Mode Exceptions and Interrupts (Contd.)

15 — (Intel reserved. Do not use.) No
16 #MF x87 FPU Floating-Point Error (Math | Fault No x87 FPU floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Yes Any data reference in memory.2
(Zero)
18 #MC Machine Check Abort No Error codes (if any) and source are model
dependent.
19 #XM SIMD Floating-Point Exception Fault No SSE/SSEZ2/SSE3 floating-point
instructions®
20 #VE Virtualization Exception Fault No EPT violations®
21-31 — Intel reserved. Do not use.
32-255 — User Defined (Non-reserved) Interrupt External interrupt or INT ninstruction.
Interrupts
NOTES:

1. Processors after the Intel386 processor do not generate this exception.

2. This exception was introduced in the Intel486 processor.

3. This exception was introduced in the Pentium processor and enhanced in the P6 family processors.

4. This exception was introduced in the Pentium Ill processor.

5. This exception can occur only on processors that support the 1-setting of the “EPT-violation #VE” VM-execution control.

The processor’s local APIC is normally connected to a system-based I/O APIC. Here, external interrupts received at
the I/O APIC's pins can be directed to the local APIC through the system bus (Pentium 4, Intel Core Duo, Intel Core
2, Intel® Atom™, and Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors). The 1/0
APIC determines the vector number of the interrupt and sends this number to the local APIC. When a system
contains multiple processors, processors can also send interrupts to one another by means of the system bus
(Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and Intel Xeon processors) or the APIC serial bus (P6 family
and Pentium processors).

The LINT[1:0] pins are not available on the Intel486 processor and earlier Pentium processors that do not contain
an on-chip local APIC. These processors have dedicated NMI and INTR pins. With these processors, external inter-
rupts are typically generated by a system-based interrupt controller (8259A), with the interrupts being signaled
through the INTR pin.

Note that several other pins on the processor can cause a processor interrupt to occur. However, these interrupts
are not handled by the interrupt and exception mechanism described in this chapter. These pins include the
RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Whether they are included on a particular processor is
implementation dependent. Pin functions are described in the data books for the individual processors. The SMI#
pin is described in Chapter 34, "System Management Mode.”

6.3.2 Maskable Hardware Interrupts

Any external interrupt that is delivered to the processor by means of the INTR pin or through the local APIC is called
a maskable hardware interrupt. Maskable hardware interrupts that can be delivered through the INTR pin include
all IA-32 architecture defined interrupt vectors from 0 through 255; those that can be delivered through the local
APIC include interrupt vectors 16 through 255.

The IF flag in the EFLAGS register permits all maskable hardware interrupts to be masked as a group (see Section
6.8.1, "Masking Maskable Hardware Interrupts”). Note that when interrupts 0 through 15 are delivered through the
local APIC, the APIC indicates the receipt of an illegal vector.

Vol. 3A 6-3

INTERRUPT AND EXCEPTION HANDLING

6.3.3 Software-Generated Interrupts

The INT n instruction permits interrupts to be generated from within software by supplying an interrupt vector
number as an operand. For example, the INT 35 instruction forces an implicit call to the interrupt handler for inter-
rupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in this instruction. If the processor’s
predefined NMI vector is used, however, the response of the processor will not be the same as it would be from an
NMI interrupt generated in the normal manner. If vector number 2 (the NMI vector) is used in this instruction, the
NMI interrupt handler is called, but the processor’s NMI-handling hardware is not activated.

Interrupts generated in software with the INT n instruction cannot be masked by the IF flag in the EFLAGS register.

6.4 SOURCES OF EXCEPTIONS

The processor receives exceptions from three sources:
® Processor-detected program-error exceptions.

® Software-generated exceptions.

® Machine-check exceptions.

6.4.1 Program-Error Exceptions

The processor generates one or more exceptions when it detects program errors during the execution in an appli-
cation program or the operating system or executive. Intel 64 and IA-32 architectures define a vector number for
each processor-detectable exception. Exceptions are classified as faults, traps, and aborts (see Section 6.5,
“Exception Classifications”).

6.4.2 Software-Generated Exceptions

The INTO, INT1, INT3, and BOUND instructions permit exceptions to be generated in software. These instructions
allow checks for exception conditions to be performed at points in the instruction stream. For example, INT3 causes
a breakpoint exception to be generated.

The INT n instruction can be used to emulate exceptions in software; but there is a limitation.! If INT n provides a
vector for one of the architecturally-defined exceptions, the processor generates an interrupt to the correct vector
(to access the exception handler) but does not push an error code on the stack. This is true even if the associated
hardware-generated exception normally produces an error code. The exception handler will still attempt to pop an
error code from the stack while handling the exception. Because no error code was pushed, the handler will pop off
and discard the EIP instead (in place of the missing error code). This sends the return to the wrong location.

6.4.3 Machine-Check Exceptions

The P6 family and Pentium processors provide both internal and external machine-check mechanisms for checking
the operation of the internal chip hardware and bus transactions. These mechanisms are implementation depen-

dent. When a machine-check error is detected, the processor signals a machine-check exception (vector 18) and

returns an error code.

See Chapter 6, “Interrupt 18—Machine-Check Exception (#MC)” and Chapter 15, “"Machine-Check Architecture,”
for more information about the machine-check mechanism.

1. The INT ninstruction has opcode CD following by an immediate byte encoding the value of n. In contrast, INT1 has opcode F1 and
INT3 has opcode CC.

6-4 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

6.5 EXCEPTION CLASSIFICATIONS

Exceptions are classified as faults, traps, or aborts depending on the way they are reported and whether the
instruction that caused the exception can be restarted without loss of program or task continuity.

®* Faults — A fault is an exception that can generally be corrected and that, once corrected, allows the program
to be restarted with no loss of continuity. When a fault is reported, the processor restores the machine state to
the state prior to the beginning of execution of the faulting instruction. The return address (saved contents of
the CS and EIP registers) for the fault handler points to the faulting instruction, rather than to the instruction
following the faulting instruction.

®* Traps — Atrap is an exception that is reported immediately following the execution of the trapping instruction.
Traps allow execution of a program or task to be continued without loss of program continuity. The return
address for the trap handler points to the instruction to be executed after the trapping instruction.

®* Aborts — An abort is an exception that does not always report the precise location of the instruction causing
the exception and does not allow a restart of the program or task that caused the exception. Aborts are used to
report severe errors, such as hardware errors and inconsistent or illegal values in system tables.

NOTE

One exception subset normally reported as a fault is not restartable. Such exceptions result in loss
of some processor state. For example, executing a POPAD instruction where the stack frame
crosses over the end of the stack segment causes a fault to be reported. In this situation, the
exception handler sees that the instruction pointer (CS:EIP) has been restored as if the POPAD
instruction had not been executed. However, internal processor state (the general-purpose
registers) will have been modified. Such cases are considered programming errors. An application
causing this class of exceptions should be terminated by the operating system.

6.6 PROGRAM OR TASK RESTART

To allow the restarting of program or task following the handling of an exception or an interrupt, all exceptions
(except aborts) are guaranteed to report exceptions on an instruction boundary. All interrupts are guaranteed to be
taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer (saved when the processor generates an exception) points
to the faulting instruction. So, when a program or task is restarted following the handling of a fault, the faulting
instruction is restarted (re-executed). Restarting the faulting instruction is commonly used to handle exceptions
that are generated when access to an operand is blocked. The most common example of this type of fault is a page-
fault exception (#PF) that occurs when a program or task references an operand located on a page that is not in
memory. When a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that the restart is handled trans-
parently to the currently executing program or task, the processor saves the necessary registers and stack pointers
to allow a restart to the state prior to the execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the trapping instruction.
If a trap is detected during an instruction which transfers execution, the return instruction pointer reflects the
transfer. For example, if a trap is detected while executing a JMP instruction, the return instruction pointer points
to the destination of the JMP instruction, not to the next address past the JMP instruction. All trap exceptions allow
program or task restart with no loss of continuity. For example, the overflow exception is a trap exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested EFLAGS.OF (over-
flow) flag. The trap handler for this exception resolves the overflow condition. Upon return from the trap handler,
program or task execution continues at the instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort handlers are designed
to collect diagnostic information about the state of the processor when the abort exception occurred and then shut
down the application and system as gracefully as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of continuity. The return
instruction pointer saved for an interrupt points to the next instruction to be executed at the instruction boundary
where the processor took the interrupt. If the instruction just executed has a repeat prefix, the interrupt is taken
at the end of the current iteration with the registers set to execute the next iteration.

Vol. 3A 6-5

INTERRUPT AND EXCEPTION HANDLING

The ability of a P6 family processor to speculatively execute instructions does not affect the taking of interrupts by
the processor. Interrupts are taken at instruction boundaries located during the retirement phase of instruction
execution; so they are always taken in the “in-order” instruction stream. See Chapter 2, “Intel® 64 and IA-32
Architectures,” in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 1, for more infor-
mation about the P6 family processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentium processor and earlier IA-32 processors also perform varying amounts of prefetching and
preliminary decoding. With these processors as well, exceptions and interrupts are not signaled until actual “in-
order” execution of the instructions. For a given code sample, the signaling of exceptions occurs uniformly when
the code is executed on any family of IA-32 processors (except where new exceptions or new opcodes have been
defined).

6.7 NONMASKABLE INTERRUPT (NMI)

The nonmaskable interrupt (NMI) can be generated in either of two ways:
® External hardware asserts the NMI pin.

® The processor receives a message on the system bus (Pentium 4, Intel Core Duo, Intel Core 2, Intel Atom, and
Intel Xeon processors) or the APIC serial bus (P6 family and Pentium processors) with a delivery mode NMI.

When the processor receives a NMI from either of these sources, the processor handles it immediately by calling
the NMI handler pointed to by interrupt vector number 2. The processor also invokes certain hardware conditions
to insure that no other interrupts, including NMI interrupts, are received until the NMI handler has completed
executing (see Section 6.7.1, “"Handling Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF flag in the EFLAGS
register.

It is possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke the NMI interrupt
handler; however, this interrupt will not truly be an NMI interrupt. A true NMI interrupt that activates the
processor’s NMI-handling hardware can only be delivered through one of the mechanisms listed above.

6.7.1 Handling Multiple NMls

While an NMI interrupt handler is executing, the processor blocks delivery of subsequent NMIs until the next execu-
tion of the IRET instruction. This blocking of NMIs prevents nested execution of the NMI handler. It is recommended
that the NMI interrupt handler be accessed through an interrupt gate to disable maskable hardware interrupts (see
Section 6.8.1, “"Masking Maskable Hardware Interrupts”).

An execution of the IRET instruction unblocks NMIs even if the instruction causes a fault. For example, if the IRET
instruction executes with EFLAGS.VM = 1 and IOPL of less than 3, a general-protection exception is generated (see
Section 20.2.7, “Sensitive Instructions”). In such a case, NMIs are unmasked before the exception handler is
invoked.

6.8 ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor and of the IF and
RF flags in the EFLAGS register, as described in the following sections.

6.8.1 Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the processor’s INTR pin or
through the local APIC (see Section 6.3.2, “"Maskable Hardware Interrupts”). When the IF flag is clear, the
processor inhibits interrupts delivered to the INTR pin or through the local APIC from generating an internal inter-
rupt request; when the IF flag is set, interrupts delivered to the INTR or through the local APIC pin are processed
as normal external interrupts.

6-6 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

The IF flag does not affect non-maskable interrupts (NMIs) delivered to the NMI pin or delivery mode NMI
messages delivered through the local APIC, nor does it affect processor generated exceptions. As with the other
flags in the EFLAGS register, the processor clears the IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and exception vectors 0
through 32 can potentially cause confusion. Architecturally, when the IF flag is set, an interrupt for any of the
vectors from 0 through 32 can be delivered to the processor through the INTR pin and any of the vectors from 16
through 32 can be delivered through the local APIC. The processor will then generate an interrupt and call the
interrupt or exception handler pointed to by the vector number. So for example, it is possible to invoke the page-
fault handler through the INTR pin (by means of vector 14); however, this is not a true page-fault exception. It is
an interrupt. As with the INT n instruction (see Section 6.4.2, “Software-Generated Exceptions”), when an inter-
rupt is generated through the INTR pin to an exception vector, the processor does not push an error code on the
stack, so the exception handler may not operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-enable flag)
instructions, respectively. These instructions may be executed only if the CPL is equal to or less than the IOPL. A
general-protection exception (#GP) is generated if they are executed when the CPL is greater than the IOPL.2 If
IF = 0, maskable hardware interrupts remain inhibited on the instruction boundary following an execution of STI.3
The inhibition ends after delivery of another event (e.g., exception) or the execution of the next instruction.

The IF flag is also affected by the following operations:

®* The PUSHF instruction stores all flags on the stack, where they can be examined and modified. The POPF
instruction can be used to load the modified flags back into the EFLAGS register.

®* Task switches and the POPF and IRET instructions load the EFLAGS register; therefore, they can be used to
modify the setting of the IF flag.

®* When an interrupt is handled through an interrupt gate, the IF flag is automatically cleared, which disables
maskable hardware interrupts. (If an interrupt is handled through a trap gate, the IF flag is not cleared.)

See the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3, “Instruction Set Reference,
A-L,” in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 2A, and Chapter 4, “Instruc-
tion Set Reference, M-U,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2B, for a
detailed description of the operations these instructions are allowed to perform on the IF flag.

6.8.2 Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruction-breakpoint condi-
tions (see the description of the RF flag in Section 2.3, "System Flags and Fields in the EFLAGS Register”).

When set, it prevents an instruction breakpoint from generating a debug exception (#DB); when clear, instruction
breakpoints will generate debug exceptions. The primary function of the RF flag is to prevent the processor from
going into a debug exception loop on an instruction-breakpoint. See Section 17.3.1.1, “Instruction-Breakpoint
Exception Condition,” for more information on the use of this flag.

As noted in Section 6.8.3, execution of the MOV or POP instruction to load the SS register suppresses any instruc-
tion breakpoint on the next instruction (just as if EFLAGS.RF were 1).

6.8.3 Masking Exceptions and Interrupts When Switching Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV €SP, StackTop

| (Software might also use the POP instruction to load SS and ESP.)

in control register CR4: see Section 20.3, “Interrupt and Exception Handling in Virtual-8086 Mode." Behavior is also impacted by the
PVI flag: see Section 20.4, “Protected-Mode Virtual Interrupts.”

3. Nonmaskable interrupts and system-management interrupts may also be inhibited on the instruction boundary following such an
execution of STI.

I 2. The effect of the IOPL on these instructions is modified slightly when the virtual mode extension is enabled by setting the VME flag

Vol. 3A 6-7

INTERRUPT AND EXCEPTION HANDLING

If an interrupt or exception occurs after the new SS segment descriptor has been loaded but before the ESP register
has been loaded, these two parts of the logical address into the stack space are inconsistent for the duration of the
interrupt or exception handler (assuming that delivery of the interrupt or exception does not itself load a new stack
pointer).

To account for this situation, the processor prevents certain events from being delivered after execution of a MOV
to SS instruction or a POP to SS instruction. The following items provide details:

® Any instruction breakpoint on the next instruction is suppressed (as if EFLAGS.RF were 1).

®* Any data breakpoint on the MOV to SS instruction or POP to SS instruction is inhibited until the instruction
boundary following the next instruction.

®* Any single-step trap that would be delivered following the MOV to SS instruction or POP to SS instruction
(because EFLAGS.TF is 1) is suppressed.

® The suppression and inhibition ends after delivery of an exception or the execution of the next instruction.

® If a sequence of consecutive instructions each loads the SS register (using MOV or POP), only the first is
guaranteed to inhibit or suppress events in this way.

Intel recommends that software use the LSS instruction to load the SS register and ESP together. The problem
identified earlier does not apply to LSS, and the LSS instruction does not inhibit events as detailed above.

6.9 PRIORITY AMONG SIMULTANEOQOUS EXCEPTIONS AND INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor services them in a
predictable order. Table 6-2 shows the priority among classes of exception and interrupt sources.

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts

Priority Description

1 (Highest) Hardware Reset and Machine Checks
- RESET
- Machine Check

2 Trap on Task Switch
-Tflagin TSS is set

3 External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

-INIT

4 Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/I-O breakpoint)

Nonmaskable Interrupts (NMI) *

Maskable Hardware Interrupts *

Code Breakpoint Fault

V| N|D| W

Faults from Fetching Next Instruction
- Code-Segment Limit Violation
- Code Page Fault

6-8 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-2. Priority Among Simultaneous Exceptions and Interrupts (Contd.)
9 Faults from Decoding the Next Instruction
- Instruction length > 15 bytes
- Invalid Opcode
- Coprocessor Not Available

10 (Lowest) | Faults on Executing an Instruction
- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- x87 FPU Floating-point exception
- SIMD floating-point exception

- Virtualization exception

NOTE
1. The Intel® 486 processor and earlier processors group nonmaskable and maskable interrupts in the same priority class.

While priority among these classes listed in Table 6-2 is consistent throughout the architecture, exceptions within
each class are implementation-dependent and may vary from processor to processor. The processor first services
a pending exception or interrupt from the class which has the highest priority, transferring execution to the first
instruction of the handler. Lower priority exceptions are discarded; lower priority interrupts are held pending.
Discarded exceptions are re-generated when the interrupt handler returns execution to the point in the program or
task where the exceptions and/or interrupts occurred.

6.10 INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate descriptor for the
procedure or task used to service the associated exception or interrupt. Like the GDT and LDTs, the IDT is an array
of 8-byte descriptors (in protected mode). Unlike the GDT, the first entry of the IDT may contain a descriptor. To
form an index into the IDT, the processor scales the exception or interrupt vector by eight (the number of bytes in
a gate descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain more than
256 descriptors. It can contain fewer than 256 descriptors, because descriptors are required only for the interrupt
and exception vectors that may occur. All empty descriptor slots in the IDT should have the present flag for the
descriptor set to 0.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize performance of cache line
fills. The limit value is expressed in bytes and is added to the base address to get the address of the last valid byte.
A limit value of 0 results in exactly 1 valid byte. Because IDT entries are always eight bytes long, the limit should
always be one less than an integral multiple of eight (that is, 8N - 1).

The IDT may reside anywhere in the linear address space. As shown in Figure 6-1, the processor locates the IDT
using the IDTR register. This register holds both a 32-bit base address and 16-bit limit for the IDT.

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the contents of the IDTR
register, respectively. The LIDT instruction loads the IDTR register with the base address and limit held in a
memory operand. This instruction can be executed only when the CPL is 0. It normally is used by the initialization
code of an operating system when creating an IDT. An operating system also may use it to change from one IDT to
another. The SIDT instruction copies the base and limit value stored in IDTR to memory. This instruction can be
executed at any privilege level.

If a vector references a descriptor beyond the limit of the IDT, a general-protection exception (#GP) is generated.

Vol. 3A 6-9

INTERRUPT AND EXCEPTION HANDLING

NOTE

Because interrupts are delivered to the processor core only once, an incorrectly configured IDT
could result in incomplete interrupt handling and/or the blocking of interrupt delivery.

IA-32 architecture rules need to be followed for setting up IDTR base/limit/access fields and each
field in the gate descriptors. The same apply for the Intel 64 architecture. This includes implicit
referencing of the destination code segment through the GDT or LDT and accessing the stack.

IDTR Register
47 16 15 0

IDT Base Address | IDT Limit

l Interrupt

Descriptor Table (IDT
@ . p (IDT)

Gate for

Interrupt #n (n—1)+8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

- Interrupt #1 0
31 0

Figure 6-1. Relationship of the IDTR and IDT

6.11 IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

* Trap-gate descriptor

Figure 6-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The format of a task
gate used in an IDT is the same as that of a task gate used in the GDT or an LDT (see Section 7.2.5, “Task-Gate
Descriptor”). The task gate contains the segment selector for a TSS for an exception and/or interrupt handler task.

Interrupt and trap gates are very similar to call gates (see Section 5.8.3, “Call Gates”). They contain a far pointer
(segment selector and offset) that the processor uses to transfer program execution to a handler procedure in an
exception- or interrupt-handler code segment. These gates differ in the way the processor handles the IF flag in the
EFLAGS register (see Section 6.12.1.2, “Flag Usage By Exception- or Interrupt-Handler Procedure”).

6-10 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Task Gate
31 16 15 14 13 12 8 7 0
D
Pl P 0010 1 4
L
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |OD110|0O00O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P|OD111/{000 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag

Selector Segment Selector for destination code segment
Size of gate: 1 = 32 bits; 0 = 16 bits

D
D Reserved

Figure 6-2. IDT Gate Descriptors

6.12 EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles calls with a CALL
instruction to a procedure or a task. When responding to an exception or interrupt, the processor uses the excep-
tion or interrupt vector as an index to a descriptor in the IDT. If the index points to an interrupt gate or trap gate,
the processor calls the exception or interrupt handler in a manner similar to a CALL to a call gate (see Section
5.8.2, “Gate Descriptors,” through Section 5.8.6, “Returning from a Called Procedure”). If index points to a task
gate, the processor executes a task switch to the exception- or interrupt-handler task in a manner similar to a CALL
to a task gate (see Section 7.3, “Task Switching”).

6.12.1 Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs in the context of
the currently executing task (see Figure 6-3). The segment selector for the gate points to a segment descriptor for
an executable code segment in either the GDT or the current LDT. The offset field of the gate descriptor points to
the beginning of the exception- or interrupt-handling procedure.

Vol. 3A 6-11

INTERRUPT AND EXCEPTION HANDLING

Destination
IDT Code Segment
Interrupt
Offset Procedure
Interrupt > Interrupt or 4’@ >

Vector Trap Gate

Y

Segment Selector

GDT or LDT
Base
Address
- Segment
- Descriptor

Figure 6-3. Interrupt Procedure Call

When the processor performs a call to the exception- or interrupt-handler procedure:

® If the handler procedure is going to be executed at a numerically lower privilege level, a stack switch occurs.
When the stack switch occurs:

a. The segment selector and stack pointer for the stack to be used by the handler are obtained from the TSS
for the currently executing task. On this new stack, the processor pushes the stack segment selector and
stack pointer of the interrupted procedure.

b. The processor then saves the current state of the EFLAGS, CS, and EIP registers on the new stack (see
Figures 6-4).

c. If an exception causes an error code to be saved, it is pushed on the new stack after the EIP value.
* If the handler procedure is going to be executed at the same privilege level as the interrupted procedure:

a. The processor saves the current state of the EFLAGS, CS, and EIP registers on the current stack (see
Figures 6-4).

b. If an exception causes an error code to be saved, it is pushed on the current stack after the EIP value.

6-12 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code |<«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s

Stack Handler’s Stack

<——ESP Before
Transfer to Handler sSS
ESP
EFLAGS
CS
EIP

ESP After—> Error Code
Transfer to Handler

Figure 6-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or IRETD) instruction.
The IRET instruction is similar to the RET instruction except that it restores the saved flags into the EFLAGS
register. The IOPL field of the EFLAGS register is restored only if the CPL is 0. The IF flag is changed only if the CPL
is less than or equal to the IOPL. See Chapter 3, “Instruction Set Reference, A-L,” of the Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 2A, for a description of the complete operation performed by the
IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches back to the interrupted
procedure’s stack on the return.

6.12.1.1 Protection of Exception- and Interrupt-Handler Procedures

The privilege-level protection for exception- and interrupt-handler procedures is similar to that used for ordinary
procedure calls when called through a call gate (see Section 5.8.4, “Accessing a Code Segment Through a Call
Gate”). The processor does not permit transfer of execution to an exception- or interrupt-handler procedure in a
less privileged code segment (numerically greater privilege level) than the CPL.

An attempt to violate this rule results in a general-protection exception (#GP). The protection mechanism for
exception- and interrupt-handler procedures is different in the following ways:

®* Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit calls to exception and
interrupt handlers.

®* The processor checks the DPL of the interrupt or trap gate only if an exception or interrupt is generated with an
INT n, INT3, or INTO instruction.? Here, the CPL must be less than or equal to the DPL of the gate. This
restriction prevents application programs or procedures running at privilege level 3 from using a software
interrupt to access critical exception handlers, such as the page-fault handler, providing that those handlers are

I 4. This check is not performed by execution of the INT1 instruction (opcode F1); it would be performed by execution of INT 1 (opcode

D 01).

Vol.3A 6-13

INTERRUPT AND EXCEPTION HANDLING

placed in more privileged code segments (numerically lower privilege level). For hardware-generated interrupts
and processor-detected exceptions, the processor ignores the DPL of interrupt and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege rules effectively
impose restrictions on the privilege levels at which exception and interrupt- handling procedures can run. Either of
the following techniques can be used to avoid privilege-level violations.

®* The exception or interrupt handler can be placed in a conforming code segment. This technique can be used for
handlers that only need to access data available on the stack (for example, divide error exceptions). If the
handler needs data from a data segment, the data segment needs to be accessible from privilege level 3, which
would make it unprotected.

®* The handler can be placed in a nonconforming code segment with privilege level 0. This handler would always
run, regardless of the CPL that the interrupted program or task is running at.

6.12.1.2 Flag Usage By Exception- or Interrupt-Handler Procedure

When accessing an exception or interrupt handler through either an interrupt gate or a trap gate, the processor

clears the TF flag in the EFLAGS register after it saves the contents of the EFLAGS register on the stack. (On calls
to exception and interrupt handlers, the processor also clears the VM, RF, and NT flags in the EFLAGS register, after
they are saved on the stack.) Clearing the TF flag prevents instruction tracing from affecting interrupt response and
ensures that no single-step exception will be delivered after delivery to the handler. A subsequent IRET instruction
restores the TF (and VM, RF, and NT) flags to the values in the saved contents of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles the IF flag in the
EFLAGS register. When accessing an exception- or interrupt-handling procedure through an interrupt gate, the
processor clears the IF flag to prevent other interrupts from interfering with the current interrupt handler. A subse-
quent IRET instruction restores the IF flag to its value in the saved contents of the EFLAGS register on the stack.
Accessing a handler procedure through a trap gate does not affect the IF flag.

6.12.2 Interrupt Tasks

When an exception or interrupt handler is accessed through a task gate in the IDT, a task switch results. Handling
an exception or interrupt with a separate task offers several advantages:

® The entire context of the interrupted program or task is saved automatically.

®* Anew TSS permits the handler to use a new privilege level 0 stack when handling the exception or interrupt. If
an exception or interrupt occurs when the current privilege level 0 stack is corrupted, accessing the handler
through a task gate can prevent a system crash by providing the handler with a new privilege level 0 stack.

®* The handler can be further isolated from other tasks by giving it a separate address space. This is done by
giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine state that must be
saved on a task switch makes it slower than using an interrupt gate, resulting in increased interrupt latency.

A task gate in the IDT references a TSS descriptor in the GDT (see Figure 6-5). A switch to the handler task is
handled in the same manner as an ordinary task switch (see Section 7.3, “Task Switching”). The link back to the
interrupted task is stored in the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

When exception- or interrupt-handler tasks are used in an operating system, there are actually two mechanisms
that can be used to dispatch tasks: the software scheduler (part of the operating system) and the hardware sched-
uler (part of the processor's interrupt mechanism). The software scheduler needs to accommodate interrupt tasks
that may be dispatched when interrupts are enabled.

6-14 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

NOTE

Because IA-32 architecture tasks are not re-entrant, an interrupt-handler task must disable
interrupts between the time it completes handling the interrupt and the time it executes the IRET
instruction. This action prevents another interrupt from occurring while the interrupt task’s TSS is
still marked busy, which would cause a general-protection (#GP) exception.

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector 1SS
Base
GDT Address

Y

TSS Descriptor

Figure 6-5. Interrupt Task Switch

6.13 ERROR CODE

When an exception condition is related to a specific segment selector or IDT vector, the processor pushes an error
code onto the stack of the exception handler (whether it is a procedure or task). The error code has the format
shown in Figure 6-6. The error code resembles a segment selector; however, instead of a TI flag and RPL field, the
error code contains 3 flags:

EXT External event (bit 0) — When set, indicates that the exception occurred during delivery of an
event external to the program, such as an interrupt or an earlier exception.> The bit is cleared if the
exception occurred during delivery of a software interrupt (INT n, INT3, or INTO).

IDT Descriptor location (bit 1) — When set, indicates that the index portion of the error code refers
to a gate descriptor in the IDT; when clear, indicates that the index refers to a descriptor in the GDT
or the current LDT.

Tl GDT/LDT (bit 2) — Only used when the IDT flag is clear. When set, the TI flag indicates that the
index portion of the error code refers to a segment or gate descriptor in the LDT; when clear, it indi-
cates that the index refers to a descriptor in the current GDT.

5. The bit is also set if the exception occurred during delivery of INT1.

Vol.3A 6-15

INTERRUPT AND EXCEPTION HANDLING

31 3

Reserved Segment Selector Index

—Xxm| o

—Ho—| =

Figure 6-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the segment or gate
selector being referenced by the error code. In some cases the error code is null (all bits are clear except possibly
EXT). A null error code indicates that the error was not caused by a reference to a specific segment or that a null
segment selector was referenced in an operation.

The format of the error code is different for page-fault exceptions (#PF). See the “Interrupt 14—Page-Fault Excep-
tion (#PF)"” section in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default interrupt, trap, or task
gate size). To keep the stack aligned for doubleword pushes, the upper half of the error code is reserved. Note that
the error code is not popped when the IRET instruction is executed to return from an exception handler, so the
handler must remove the error code before executing a return.

Error codes are not pushed on the stack for exceptions that are generated externally (with the INTR or LINT[1:0]
pins) or the INT n instruction, even if an error code is normally produced for those exceptions.

6.14 EXCEPTION AND INTERRUPT HANDLING IN 64-BIT MODE

In 64-bit mode, interrupt and exception handling is similar to what has been described for non-64-bit modes. The
following are the exceptions:

® Allinterrupt handlers pointed by the IDT are in 64-bit code (this does not apply to the SMI handler).
®* The size of interrupt-stack pushes is fixed at 64 bits; and the processor uses 8-byte, zero extended stores.

®* The stack pointer (SS:RSP) is pushed unconditionally on interrupts. In legacy modes, this push is conditional
and based on a change in current privilege level (CPL).

® The new SS is set to NULL if there is a change in CPL.
®* IRET behavior changes.

® There is a new interrupt stack-switch mechanism.

® The alignment of interrupt stack frame is different.

6.14.1 64-Bit Mode IDT

Interrupt and trap gates are 16 bytes in length to provide a 64-bit offset for the instruction pointer (RIP). The 64-
bit RIP referenced by interrupt-gate descriptors allows an interrupt service routine to be located anywhere in the
linear-address space. See Figure 6-7.

6-16 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt/Trap Gate
31 0
Reserved 12
31 0
Offset 63..32 8
31 1615141312 11 8 7 54 2 0
Offset 31..16 P B 0| TYPE 0O 0 Ofo|0O]| IST |4
L
31 1615 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 6-7. 64-Bit IDT Gate Descriptors

In 64-bit mode, the IDT index is formed by scaling the interrupt vector by 16. The first eight bytes (bytes 7:0) of a
64-bit mode interrupt gate are similar but not identical to legacy 32-bit interrupt gates. The type field (bits 11:8 in
bytes 7:4) is described in Table 3-2. The Interrupt Stack Table (IST) field (bits 4:0 in bytes 7:4) is used by the stack
switching mechanisms described in Section 6.14.5, “Interrupt Stack Table.” Bytes 11:8 hold the upper 32 bits of

the target RIP (interrupt segment offset) in canonical form. A general-protection exception (#GP) is generated if
software attempts to reference an interrupt gate with a target RIP that is not in canonical form.

The target code segment referenced by the interrupt gate must be a 64-bit code segment (CS.L = 1, CS.D = 0). If
the target is not a 64-bit code segment, a general-protection exception (#GP) is generated with the IDT vector
number reported as the error code.

Only 64-bit interrupt and trap gates can be referenced in IA-32e mode (64-bit mode and compatibility mode).
Legacy 32-bit interrupt or trap gate types (OEH or OFH) are redefined in IA-32e mode as 64-bit interrupt and trap
gate types. No 32-bit interrupt or trap gate type exists in IA-32e mode. If a reference is made to a 16-bit interrupt
or trap gate (06H or 07H), a general-protection exception (#GP(0)) is generated.

6.14.2 64-Bit Mode Stack Frame

In legacy mode, the size of an IDT entry (16 bits or 32 bits) determines the size of interrupt-stack-frame pushes.
SS:ESP is pushed only on a CPL change. In 64-bit mode, the size of interrupt stack-frame pushes is fixed at eight
bytes. This is because only 64-bit mode gates can be referenced. 64-bit mode also pushes SS:RSP unconditionally,
rather than only on a CPL change.

Aside from error codes, pushing SS:RSP unconditionally presents operating systems with a consistent interrupt-
stackframe size across all interrupts. Interrupt service-routine entry points that handle interrupts generated by the
INTn instruction or external INTR# signal can push an additional error code place-holder to maintain consistency.

In legacy mode, the stack pointer may be at any alignment when an interrupt or exception causes a stack frame to
be pushed. This causes the stack frame and succeeding pushes done by an interrupt handler to be at arbitrary
alignments. In IA-32e mode, the RSP is aligned to a 16-byte boundary before pushing the stack frame. The stack
frame itself is aligned on a 16-byte boundary when the interrupt handler is called. The processor can arbitrarily
realign the new RSP on interrupts because the previous (possibly unaligned) RSP is unconditionally saved on the
newly aligned stack. The previous RSP will be automatically restored by a subsequent IRET.

Aligning the stack permits exception and interrupt frames to be aligned on a 16-byte boundary before interrupts
are re-enabled. This allows the stack to be formatted for optimal storage of 16-byte XMM registers, which enables

Vol.3A 6-17

INTERRUPT AND EXCEPTION HANDLING

the interrupt handler to use faster 16-byte aligned loads and stores (MOVAPS rather than MOVUPS) to save and
restore XMM registers.

Although the RSP alignment is always performed when LMA = 1, it is only of consequence for the kernel-mode case
where there is no stack switch or IST used. For a stack switch or IST, the OS would have presumably put suitably
aligned RSP values in the TSS.

6.14.3 IRET in IA-32e Mode

In IA-32e mode, IRET executes with an 8-byte operand size. There is nothing that forces this requirement. The
stack is formatted in such a way that for actions where IRET is required, the 8-byte IRET operand size works
correctly.

Because interrupt stack-frame pushes are always eight bytes in IA-32e mode, an IRET must pop eight byte items
off the stack. This is accomplished by preceding the IRET with a 64-bit operand-size prefix. The size of the pop is
determined by the address size of the instruction. The SS/ESP/RSP size adjustment is determined by the stack size.

IRET pops SS:RSP unconditionally off the interrupt stack frame only when it is executed in 64-bit mode. In compat-
ibility mode, IRET pops SS:RSP off the stack only if there is a CPL change. This allows legacy applications to execute
properly in compatibility mode when using the IRET instruction. 64-bit interrupt service routines that exit with an

IRET unconditionally pop SS:RSP off of the interrupt stack frame, even if the target code segment is running in 64-
bit mode or at CPL = 0. This is because the original interrupt always pushes SS:RSP.

In IA-32e mode, IRET is allowed to load a NULL SS under certain conditions. If the target mode is 64-bit mode and
the target CPL # 3, IRET allows SS to be loaded with a NULL selector. As part of the stack switch mechanism, an
interrupt or exception sets the new SS to NULL, instead of fetching a new SS selector from the TSS and loading the
corresponding descriptor from the GDT or LDT. The new SS selector is set to NULL in order to properly handle
returns from subsequent nested far transfers. If the called procedure itself is interrupted, the NULL SS is pushed on
the stack frame. On the subsequent IRET, the NULL SS on the stack acts as a flag to tell the processor not to load
a new SS descriptor.

6.14.4 Stack Switching in IA-32e Mode

The IA-32 architecture provides a mechanism to automatically switch stack frames in response to an interrupt. The
64-bit extensions of Intel 64 architecture implement a modified version of the legacy stack-switching mechanism
and an alternative stack-switching mechanism called the interrupt stack table (IST).

In IA-32 modes, the legacy IA-32 stack-switch mechanism is unchanged. In IA-32e mode, the legacy stack-switch
mechanism is modified. When stacks are switched as part of a 64-bit mode privilege-level change (resulting from
an interrupt), a new SS descriptor is not loaded. IA-32e mode loads only an inner-level RSP from the TSS. The new
SS selector is forced to NULL and the SS selector’s RPL field is set to the new CPL. The new SS is set to NULL in
order to handle nested far transfers (far CALL, INT, interrupts and exceptions). The old SS and RSP are saved on
the new stack (Figure 6-8). On the subsequent IRET, the old SS is popped from the stack and loaded into the SS
register.

In summary, a stack switch in IA-32e mode works like the legacy stack switch, except that a new SS selector is not
loaded from the TSS. Instead, the new SS is forced to NULL.

6-18 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Legacy Mode

Handler’s Stack

Stack Usage with

Privilege-Level Change

1A-32e Mode

Handler’s Stack

+20 Ss SS +40
+16 ESP RSP +32
+12| EFLAGS RFLAGS +24
+8 CS cS +16
+4 EIP RIP +8

—>»| Error Code 0

-«— Stack Pointer After
Transfer to Handler

0 Error Code

Figure 6-8. IA-32e Mode Stack Usage After Privilege Level Change

6.14.5 Interrupt Stack Table

In IA-32e mode, a new interrupt stack table (IST) mechanism is available as an alternative to the modified legacy
stack-switching mechanism described above. This mechanism unconditionally switches stacks when it is enabled.
It can be enabled on an individual interrupt-vector basis using a field in the IDT entry. This means that some inter-
rupt vectors can use the modified legacy mechanism and others can use the IST mechanism.

The IST mechanism is only available in IA-32e mode. It is part of the 64-bit mode TSS. The motivation for the IST
mechanism is to provide a method for specific interrupts (such as NMI, double-fault, and machine-check) to always
execute on a known good stack. In legacy mode, interrupts can use the task-switch mechanism to set up a known-
good stack by accessing the interrupt service routine through a task gate located in the IDT. However, the legacy

task-switch mechanism is not supported in IA-32e mode.

The IST mechanism provides up to seven IST pointers in the TSS. The pointers are referenced by an interrupt-gate
descriptor in the interrupt-descriptor table (IDT); see Figure 6-7. The gate descriptor contains a 3-bit IST index
field that provides an offset into the IST section of the TSS. Using the IST mechanism, the processor loads the
value pointed by an IST pointer into the RSP.

When an interrupt occurs, the new SS selector is forced to NULL and the SS selector’s RPL field is set to the new
CPL. The old SS, RSP, RFLAGS, CS, and RIP are pushed onto the new stack. Interrupt processing then proceeds as
normal. If the IST index is zero, the modified legacy stack-switching mechanism described above is used.

6.15 EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are arranged in the
order of vector numbers. The information contained in these sections are as follows:

®* Exception Class — Indicates whether the exception class is a fault, trap, or abort type. Some exceptions can
be either a fault or trap type, depending on when the error condition is detected. (This section is not applicable
to interrupts.)

®* Description — Gives a general description of the purpose of the exception or interrupt type. It also describes
how the processor handles the exception or interrupt.

® Exception Error Code — Indicates whether an error code is saved for the exception. If one is saved, the
contents of the error code are described. (This section is not applicable to interrupts.)

® Saved Instruction Pointer — Describes which instruction the saved (or return) instruction pointer points to.
It also indicates whether the pointer can be used to restart a faulting instruction.

® Program State Change — Describes the effects of the exception or interrupt on the state of the currently
running program or task and the possibilities of restarting the program or task without loss of continuity.

Vol. 3A 6-19

INTERRUPT AND EXCEPTION HANDLING

Interrupt 0—Divide Error Exception (#DE)

Exception Class Fault.

Description

Indicates the divisor operand for a DIV or IDIV instruction is 0 or that the result cannot be represented in the
number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs before the faulting
instruction is executed.

6-20 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 1—Debug Exception (#DB)

Exception Class Trap or Fault. The exception handler can distinguish between traps or faults by exam-
ining the contents of DR6 and the other debug registers.

Description

Indicates that one or more of several debug-exception conditions has been detected. Whether the exception is a
fault or a trap depends on the condition (see Table 6-3). See Chapter 17, “Debug, Branch Profile, TSC, and Intel®
Resource Director Technology (Intel® RDT) Features,” for detailed information about the debug exceptions.

Table 6-3. Debug Exception Conditions and Corresponding Exception Classes

Exception Condition Exception Class
Instruction fetch breakpoint Fault

Data read or write breakpoint Trap

I/0 read or write breakpoint Trap

General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap

Execution of INT1' Trap
NOTES:

1. Hardware vendors may use the INT1 instruction for hardware debug. For that reason, Intel recommends software vendors instead
use the INT3 instruction for software breakpoints.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition caused the exception.

Saved Instruction Pointer
Fault — Saved contents of CS and EIP registers point to the instruction that generated the exception.

Trap — Saved contents of CS and EIP registers point to the instruction following the instruction that generated the
exception.

Program State Change

Fault — A program-state change does not accompany the debug exception, because the exception occurs before
the faulting instruction is executed. The program can resume normal execution upon returning from the debug
exception handler.

Trap — A program-state change does accompany the debug exception, because the instruction or task switch being
executed is allowed to complete before the exception is generated. However, the new state of the program is not
corrupted and execution of the program can continue reliably.

The following items detail the treatment of debug exceptions on the instruction boundary following execution of the
MOV or the POP instruction that loads the SS register:

* If EFLAGS.TFis 1, no single-step trap is generated.

* If the instruction encounters a data breakpoint, the resulting debug exception is delivered after completion of
the instruction after the MOV or POP. This occurs even if the next instruction is INT n, INT3, or INTO.

® Any instruction breakpoint on the instruction after the MOV or POP is suppressed (as if EFLAGS.RF were 1).

Any debug exception inside an RTM region causes a transactional abort and, by default, redirects control flow to the
fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any transac-
tional abort due to a debug exception instead causes execution to roll back to just before the XBEGIN instruction

Vol. 3A 6-21

INTERRUPT AND EXCEPTION HANDLING

and then delivers a #DB. See Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and 1A-32 Architec-
tures Software Developer’s Manual, Volume 1.

6-22 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 2—NMI Interrupt

Exception Class Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin or through an NMI
request set by the I/O APIC to the local APIC. This interrupt causes the NMI interrupt handler to be called.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of CS and EIP regis-
ters point to the next instruction to be executed at the point the interrupt is taken. See Section 6.5, “Exception
Classifications,” for more information about when the processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is generated. A program
or task can thus be restarted upon returning from an interrupt handler without loss of continuity, provided the
interrupt handler saves the state of the processor before handling the interrupt and restores the processor’s state
prior to a return.

Vol. 3A 6-23

INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)

Exception Class Trap.

Description

Indicates that a breakpoint instruction (INT3, opcode CC) was executed, causing a breakpoint trap to be gener-
ated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an instruction with the opcode for
the INT3 instruction. (The INT3 instruction is one byte long, which makes it easy to replace an opcode in a code
segment in RAM with the breakpoint opcode.) The operating system or a debugging tool can use a data segment
mapped to the same physical address space as the code segment to place an INT3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium, Intel486, and Intel386 processors, it is more convenient to set breakpoints with the
debug registers. (See Section 17.3.2, “"Breakpoint Exception (#BP)—Interrupt Vector 3,” for information about the
breakpoint exception.) If more breakpoints are needed beyond what the debug registers allow, the INT3 instruction
can be used.

Any breakpoint exception inside an RTM region causes a transactional abort and, by default, redirects control flow
to the fallback instruction address. If advanced debugging of RTM transactional regions has been enabled, any
transactional abort due to a break exception instead causes execution to roll back to just before the XBEGIN
instruction and then delivers a debug exception (#DB) — not a breakpoint exception. See Section 16.3.7, "RTM-
Enabled Debugger Support,” of Intel® 64 and I1A-32 Architectures Software Developer’'s Manual, Volume 1.

A breakpoint exception can also be generated by executing the INT n instruction with an operand of 3. The action
of this instruction (INT 3) is slightly different than that of the INT3 instruction (see “INT n/INTO/INT3/INT1—Call to
Interrupt Procedure” in Chapter 3 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume
2A).

Exception Error Code
None.

Saved Instruction Pointer
Saved contents of CS and EIP registers point to the instruction following the INT3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of the program is
essentially unchanged because the INT3 instruction does not affect any register or memory locations. The
debugger can thus resume the suspended program by replacing the INT3 instruction that caused the breakpoint
with the original opcode and decrementing the saved contents of the EIP register. Upon returning from the
debugger, program execution resumes with the replaced instruction.

6-24 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 4—Overflow Exception (#OF)

Exception Class Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO instruction checks the
state of the OF flag in the EFLAGS register. If the OF flag is set, an overflow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned arithmetic. These
instructions set the OF and CF flags in the EFLAGS register to indicate signed overflow and unsigned overflow,
respectively. When performing arithmetic on signed operands, the OF flag can be tested directly or the INTO
instruction can be used. The benefit of using the INTO instruction is that if the overflow exception is detected, an
exception handler can be called automatically to handle the overflow condition.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the program is essentially
unchanged because the INTO instruction does not affect any register or memory locations. The program can thus
resume normal execution upon returning from the overflow exception handler.

Vol. 3A 6-25

INTERRUPT AND EXCEPTION HANDLING

Interrupt 5—BOUND Range Exceeded Exception (#BR)

Exception Class Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was executed. The BOUND
instruction checks that a signed array index is within the upper and lower bounds of an array located in memory. If
the array index is not within the bounds of the array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer
The saved contents of CS and EIP registers point to the BOUND instruction that generated the exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for the BOUND
instruction are not modified. Returning from the BOUND-range-exceeded exception handler causes the BOUND
instruction to be restarted.

6-26 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 6—Invalid Opcode Exception (#UD)

Exception Class Fault.

Description
Indicates that the processor did one of the following things:
® Attempted to execute an invalid or reserved opcode.

®* Attempted to execute an instruction with an operand type that is invalid for its accompanying opcode; for
example, the source operand for a LES instruction is not a memory location.

* Attempted to execute an MMX or SSE/SSE2/SSE3 instruction on an Intel 64 or IA-32 processor that does not
support the MMX technology or SSE/SSE2/SSE3/SSSE3 extensions, respectively. CPUID feature flags MMX (bit
23), SSE (bit 25), SSE2 (bit 26), SSE3 (ECX, bit 0), SSSE3 (ECX, bit 9) indicate support for these extensions.

® Attempted to execute an MMX instruction or SSE/SSE2/SSE3/SSSE3 SIMD instruction (with the exception of
the MOVNTI, PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, CLFLUSH, MONITOR, and MWAIT instructions)
when the EM flag in control register CRO is set (1).

* Attempted to execute an SSE/SE2/SSE3/SSSE3 instruction when the OSFXSR bit in control register CR4 is
clear (0). Note this does not include the following SSE/SSE2/SSE3 instructions: MASKMOVQ, MOVNTQ,
MOVNTI, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH; or the 64-bit versions of the PAVGB, PAVGW,
PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB, PMOVMSKB, PMULHUW, PSADBW, PSHUFW, PADDQ,
PSUBQ, PALIGNR, PABSB, PABSD, PABSW, PHADDD, PHADDSW, PHADDW, PHSUBD, PHSUBSW, PHSUBW,
PMADDUBSM, PMULHRSW, PSHUFB, PSIGNB, PSIGND, and PSIGNW.

® Attempted to execute an SSE/SSE2/SSE3/SSSE3 instruction on an Intel 64 or IA-32 processor that caused a
SIMD floating-point exception when the OSXMMEXCPT bit in control register CR4 is clear (0).

®* Executed a UDO, UD1 or UD2 instruction. Note that even though it is the execution of the UDO, UD1 or UD2
instruction that causes the invalid opcode exception, the saved instruction pointer will still points at the UDO,
UD1 or UD2 instruction.

* Detected a LOCK prefix that precedes an instruction that may not be locked or one that may be locked but the
destination operand is not a memory location.

® Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL instruction while in real-
address or virtual-8086 mode.

® Attempted to execute the RSM instruction when not in SMM mode.

In Intel 64 and IA-32 processors that implement out-of-order execution microarchitectures, this exception is not
generated until an attempt is made to retire the result of executing an invalid instruction; that is, decoding and
speculatively attempting to execute an invalid opcode does not generate this exception. Likewise, in the Pentium
processor and earlier IA-32 processors, this exception is not generated as the result of prefetching and preliminary
decoding of an invalid instruction. (See Section 6.5, “"Exception Classifications,” for general rules for taking of inter-
rupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes reserved by the Intel 64 and IA-32 architectures. These opcodes,
even though undefined, do not generate an invalid opcode exception.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid instruction is not
executed.

Vol. 3A 6-27

INTERRUPT AND EXCEPTION HANDLING

Interrupt 7—Device Not Available Exception (#NM)

Exception Class Fault.

Description
Indicates one of the following things:
The device-not-available exception is generated by either of three conditions:

® The processor executed an x87 FPU floating-point instruction while the EM flag in control register CRO was set
(1). See the paragraph below for the special case of the WAIT/FWAIT instruction.

® The processor executed a WAIT/FWAIT instruction while the MP and TS flags of register CRO were set,
regardless of the setting of the EM flag.

® The processor executed an x87 FPU, MMX, or SSE/SSE2/SSE3 instruction (with the exception of MOVNTI,
PAUSE, PREFETCHh, SFENCE, LFENCE, MFENCE, and CLFLUSH) while the TS flag in control register CRO was set
and the EM flag is clear.

The EM flag is set when the processor does not have an internal x87 FPU floating-point unit. A device-not-available
exception is then generated each time an x87 FPU floating-point instruction is encountered, allowing an exception
handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time an x87 floating-point,
MMX, or SSE/SSE2/SSE3 instruction was executed; but that the context of the x87 FPU, XMM, and MXCSR registers
were not saved. When the TS flag is set and the EM flag is clear, the processor generates a device-not-available
exception each time an x87 floating-point, MMX, or SSE/SSE2/SSE3 instruction is encountered (with the exception
of the instructions listed above). The exception handler can then save the context of the x87 FPU, XMM, and MXCSR
registers before it executes the instruction. See Section 2.5, “"Control Registers,” for more information about the TS
flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or FWAIT instructions should
generate a device-not-available exception. It extends the function of the TS flag to the WAIT and FWAIT instruc-
tions, giving the exception handler an opportunity to save the context of the x87 FPU before the WAIT or FWAIT
instruction is executed. The MP flag is provided primarily for use with the Intel 286 and Intel386 DX processors. For
programs running on the Pentium 4, Intel Xeon, P6 family, Pentium, or Intel486 DX processors, or the Intel 487 SX
coprocessors, the MP flag should always be set; for programs running on the Intel486 SX processor, the MP flag
should be clear.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the WAIT/FWAIT instruction
that generated the exception.

Program State Change

A program-state change does not accompany a device-not-available fault, because the instruction that generated
the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed to by the EIP and call
the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the context of the x87 FPU,
clear the TS flag, and continue execution at the interrupted floating-point or WAIT/FWAIT instruction.

6-28 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 8—Double Fault Exception (#DF)

Exception Class Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for a prior exception.
Normally, when the processor detects another exception while trying to call an exception handler, the two excep-
tions can be handled serially. If, however, the processor cannot handle them serially, it signals the double-fault
exception. To determine when two faults need to be signalled as a double fault, the processor divides the excep-
tions into three classes: benign exceptions, contributory exceptions, and page faults (see Table 6-4).

Table 6-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault
20 Virtualization Exception

Table 6-5 shows the various combinations of exception classes that cause a double fault to be generated. A double-
fault exception falls in the abort class of exceptions. The program or task cannot be restarted or resumed. The
double-fault handler can be used to collect diagnostic information about the state of the machine and/or, when
possible, to shut the application and/or system down gracefully or restart the system.

Vol. 3A 6-29

INTERRUPT AND EXCEPTION HANDLING

A segment or page fault may be encountered while prefetching instructions; however, this behavior is outside the
domain of Table 6-5. Any further faults generated while the processor is attempting to transfer control to the appro-
priate fault handler could still lead to a double-fault sequence.

Table 6-5. Conditions for Generating a Double Fault
Second Exception

First Exception Benign Contributory Page Fault

Benign Handle Exceptions Serially Handle Exceptions Serially Handle Exceptions Serially
Contributory Handle Exceptions Serially Generate a Double Fault Handle Exceptions Serially
Page Fault Handle Exceptions Serially Generate a Double Fault Generate a Double Fault
Double Fault Handle Exceptions Serially Enter Shutdown Mode Enter Shutdown Mode

If another contributory or page fault exception occurs while attempting to call the double-fault handler, the
processor enters shutdown mode. This mode is similar to the state following execution of an HLT instruction. In this
mode, the processor stops executing instructions until an NMI interrupt, SMI interrupt, hardware reset, or INIT# is
received. The processor generates a special bus cycle to indicate that it has entered shutdown mode. Software
designers may need to be aware of the response of hardware when it goes into shutdown mode. For example, hard-
ware may turn on an indicator light on the front panel, generate an NMI interrupt to record diagnostic information,
invoke reset initialization, generate an INIT initialization, or generate an SMI. If any events are pending during
shutdown, they will be handled after an wake event from shutdown is processed (for example, A20M# interrupts).

If a shutdown occurs while the processor is executing an NMI interrupt handler, then only a hardware reset can
restart the processor. Likewise, if the shutdown occurs while executing in SMM, a hardware reset must be used to
restart the processor.

Exception Error Code
Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot be resumed or
restarted. The only available action of the double-fault exception handler is to collect all possible context informa-
tion for use in diagnostics and then close the application and/or shut down or reset the processor.

If the double fault occurs when any portion of the exception handling machine state is corrupted, the handler
cannot be invoked and the processor must be reset.

6-30 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 9—Coprocessor Segment Overrun

Exception Class Abort. (Intel reserved; do not use. Recent IA-32 processors do not generate this
exception.)

Description

Indicates that an Intel386 CPU-based systems with an Intel 387 math coprocessor detected a page or segment
violation while transferring the middle portion of an Intel 387 math coprocessor operand. The P6 family, Pentium,
and Intel486 processors do not generate this exception; instead, this condition is detected with a general protec-
tion exception (#GP), interrupt 13.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the exception handler is to save the instruction pointer and
reinitialize the x87 FPU using the FNINIT instruction.

Vol. 3A 6-31

INTERRUPT AND EXCEPTION HANDLING

Interrupt 10—Invalid TSS Exception (#TS)

Exception Class Fault.

Description

Indicates that there was an error related to a TSS. Such an error might be detected during a task switch or during
the execution of instructions that use information from a TSS. Table 6-6 shows the conditions that cause an invalid

TSS exception to be generated.

Table 6-6. Invalid TSS Conditions

Error Code Index

Invalid Condition

TSS segment selector index

The TSS segment limit is less than 67H for 32-bit TSS or less than 2CH for 16-bit TSS.

TSS segment selector index

During an IRET task switch, the Tl flag in the TSS segment selector indicates the LDT.

TSS segment selector index

During an IRET task switch, the TSS segment selector exceeds descriptor table limit.

TSS segment selector index

During an IRET task switch, the busy flag in the TSS descriptor indicates an inactive task.

TSS segment selector index

During a task switch, an attempt to access data in a TSS results in a limit violation or
canonical fault.

TSS segment selector index

During an IRET task switch, the backlink is a NULL selector.

TSS segment selector index

During an IRET task switch, the backlink points to a descriptor which is not a busy TSS.

TSS segment selector index

The new TSS descriptor is beyond the GDT limit.

TSS segment selector index

The new TSS selector is null on an attempt to lock the new TSS.

TSS segment selector index

The new TSS selector has the Tl bit set on an attempt to lock the new TSS.

TSS segment selector index

The new TSS descriptor is not an available TSS descriptor on an attempt to lock the new
TSS.

LDT segment selector index

LDT not valid or not present.

Stack segment selector index

The stack segment selector exceeds descriptor table limit.

Stack segment selector index

The stack segment selector is NULL.

Stack segment selector index

The stack segment descriptor is a non-data segment.

Stack segment selector index

The stack segment is not writable.

Stack segment selector index

The stack segment DPL # CPL.

Stack segment selector index

The stack segment selector RPL # CPL.

Code segment selector index

The code segment selector exceeds descriptor table limit.

Code segment selector index

The code segment selector is NULL.

Code segment selector index

The code segment descriptor is not a code segment type.

Code segment selector index

The nonconforming code segment DPL # CPL.

Code segment selector index

The conforming code segment DPL is greater than CPL.

Data segment selector index

The data segment selector exceeds the descriptor table limit.

Data segment selector index

The data segment descriptor is not a readable code or data type.

Data segment selector index

The data segment descriptor is a nonconforming code type and RPL > DPL.

Data segment selector index

The data segment descriptor is a nonconforming code type and CPL > DPL.

TSS segment selector index

The TSS segment descriptor/upper descriptor is beyond the GDT segment limit.

TSS segment selector index

The TSS segment descriptor is not an available TSS type.

TSS segment selector index

The TSS segment descriptor is an available 286 TSS type in 1A-32e mode.

6-32 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-6. Invalid TSS Conditions (Contd.)

Error Code Index Invalid Condition
TSS segment selector index The TSS segment upper descriptor is not the correct type.
TSS segment selector index The TSS segment descriptor contains a non-canonical base.

This exception can generated either in the context of the original task or in the context of the new task (see Section
7.3, “Task Switching”). Until the processor has completely verified the presence of the new TSS, the exception is
generated in the context of the original task. Once the existence of the new TSS is verified, the task switch is
considered complete. Any invalid-TSS conditions detected after this point are handled in the context of the new
task. (A task switch is considered complete when the task register is loaded with the segment selector for the new
TSS and, if the switch is due to a procedure call or interrupt, the previous task link field of the new TSS references
the old TSS.)

The invalid-TSS handler must be a task called using a task gate. Handling this exception inside the faulting TSS
context is not recommended because the processor state may not be consistent.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception was caused by an event
external to the currently running program (for example, if an external interrupt handler using a task gate
attempted a task switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved contents of CS and EIP
registers point to the instruction that invoked the task switch. If the exception condition was detected after the task
switch was carried out, the saved contents of CS and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition than causes the fault.
See Section 7.3, “Task Switching,” for more information on the task switch process and the possible recovery
actions that can be taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-to-new-task point.
If it occurs before the commit point, no program state change occurs. If it occurs after the commit point (when the
segment descriptor information for the new segment selectors have been loaded in the segment registers), the
processor will load all the state information from the new TSS before it generates the exception. During a task
switch, the processor first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers are loaded but not
checked for validity and therefore may not be usable for referencing memory. The invalid TSS handler should not
rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should load all segment registers before trying to resume the new task;
otherwise, general-protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS exception handler. The task
switch back to the interrupted task from the invalid-TSS exception-handler task will then cause the processor to
check the registers as it loads them from the TSS.

Vol. 3A 6-33

INTERRUPT AND EXCEPTION HANDLING

Interrupt 11—Segment Not Present (#NP)

Exception Class Fault.

Description

Indicates that the present flag of a segment or gate descriptor is clear. The processor can generate this exception
during any of the following operations:

®* While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present segment while loading the
SS register causes a stack fault exception (#SS) to be generated.] This situation can occur while performing a
task switch.

®* While attempting to load the LDTR using an LLDT instruction. Detection of a not-present LDT while loading the
LDTR during a task switch operation causes an invalid-TSS exception (#TS) to be generated.

®* When executing the LTR instruction and the TSS is marked not present.
®* While attempting to use a gate descriptor or TSS that is marked segment-not-present, but is otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual memory at the
segment level. If the exception handler loads the segment and returns, the interrupted program or task resumes
execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not present (because
gates do not correspond to segments). The operating system may use the present flag for gate descriptors to
trigger exceptions of special significance to the operating system.

A contributory exception or page fault that subsequently referenced a not-present segment would cause a double
fault (#DF) to be generated instead of #NP.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the violation is pushed
onto the stack of the exception handler. If the EXT flag is set, it indicates that the exception resulted from either:

®* an external event (NMI or INTR) that caused an interrupt, which subsequently referenced a not-present
segment

®* a benign exception that subsequently referenced a not-present segment

The IDT flag is set if the error code refers to an IDT entry. This occurs when the IDT entry for an interrupt being
serviced references a not-present gate. Such an event could be generated by an INT instruction or a hardware
interrupt.

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the exception. If the
exception occurred while loading segment descriptors for the segment selectors in a new TSS, the CS and EIP
registers point to the first instruction in the new task. If the exception occurred while accessing a gate descriptor,
the CS and EIP registers point to the instruction that invoked the access (for example a CALL instruction that refer-
ences a call gate).

Program State Change

If the segment-not-present exception occurs as the result of loading a register (CS, DS, SS, ES, FS, GS, or LDTR),
a program-state change does accompany the exception because the register is not loaded. Recovery from this
exception is possible by simply loading the missing segment into memory and setting the present flag in the
segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state change does not
accompany the exception. Recovery from this exception is possible merely by setting the present flag in the gate
descriptor.

If a segment-not-present exception occurs during a task switch, it can occur before or after the commit-to-new-
task point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change

6-34 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

occurs. If it occurs after the commit point, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The segment-
not-present exception handler should not rely on being able to use the segment selectors found in the CS, SS, DS,
ES, FS, and GS registers without causing another exception. (See the Program State Change description for “Inter-
rupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Vol.3A 6-35

INTERRUPT AND EXCEPTION HANDLING

Interrupt 12—Stack Fault Exception (#SS)

Exception Class Fault.

Description

Indicates that one of the following stack related conditions was detected:

* Alimit violation is detected during an operation that refers to the SS register. Operations that can cause a limit
violation include stack-oriented instructions such as POP, PUSH, CALL, RET, IRET, ENTER, and LEAVE, as well as
other memory references which implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or
MOV AX, SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough stack space
for allocating local variables.

®* A not-present stack segment is detected when attempting to load the SS register. This violation can occur
during the execution of a task switch, a CALL instruction to a different privilege level, a return to a different
privilege level, an LSS instruction, or a MOV or POP instruction to the SS register.

® A canonical violation is detected in 64-bit mode during an operation that reference memory using the stack
pointer register containing a non-canonical memory address.

Recovery from this fault is possible by either extending the limit of the stack segment (in the case of a limit viola-
tion) or loading the missing stack segment into memory (in the case of a not-present violation.

In the case of a canonical violation that was caused intentionally by software, recovery is possible by loading the
correct canonical value into RSP. Otherwise, a canonical violation of the address in RSP likely reflects some register
corruption in the software.

Exception Error Code

If the exception is caused by a not-present stack segment or by overflow of the new stack during an inter-privilege-
level call, the error code contains a segment selector for the segment that caused the exception. Here, the excep-
tion handler can test the present flag in the segment descriptor pointed to by the segment selector to determine
the cause of the exception. For a normal limit violation (on a stack segment already in use) the error code is set to
0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception.
However, when the exception results from attempting to load a not-present stack segment during a task switch, the
CS and EIP registers point to the first instruction of the new task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the instruction that gener-
ated the fault is not executed. Here, the instruction can be restarted after the exception handler has corrected the
stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (see Section 7.3, “Task
Switching”). Here, the processor loads all the state information from the new TSS (without performing any addi-
tional limit, present, or type checks) before it generates the exception. The stack fault handler should thus not rely
on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers without causing
another exception. The exception handler should check all segment registers before trying to resume the new
task; otherwise, general protection faults may result later under conditions that are more difficult to diagnose. (See
the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)"” in this chapter for additional
information on how to handle this situation.)

6-36 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 13—General Protection Exception (#GP)

Exception Class Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-protection violations.”
The conditions that cause this exception to be generated comprise all the protection violations that do not cause
other exceptions to be generated (such as, invalid-TSS, segment-not-present, stack-fault, or page-fault excep-
tions). The following conditions cause general-protection exceptions to be generated:

Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

Exceeding the segment limit when referencing a descriptor table (except during a task switch or a stack
switch).

Transferring execution to a segment that is not executable.
Writing to a code segment or a read-only data segment.
Reading from an execute-only code segment.

Loading the SS register with a segment selector for a read-only segment (unless the selector comes from a TSS
during a task switch, in which case an invalid-TSS exception occurs).

Loading the SS, DS, ES, FS, or GS register with a segment selector for a system segment.

Loading the DS, ES, FS, or GS register with a segment selector for an execute-only code segment.
Loading the SS register with the segment selector of an executable segment or a null segment selector.
Loading the CS register with a segment selector for a data segment or a null segment selector.
Accessing memory using the DS, ES, FS, or GS register when it contains a null segment selector.
Switching to a busy task during a call or jump to a TSS.

Using a segment selector on a non-IRET task switch that points to a TSS descriptor in the current LDT. TSS
descriptors can only reside in the GDT. This condition causes a #TS exception during an IRET task switch.

Violating any of the privilege rules described in Chapter 5, “Protection.”

Exceeding the instruction length limit of 15 bytes (this only can occur when redundant prefixes are placed
before an instruction).

Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag (protection disabled).
Loading the CRO register with a set NW flag and a clear CD flag.
Referencing an entry in the IDT (following an interrupt or exception) that is not an interrupt, trap, or task gate.

Attempting to access an interrupt or exception handler through an interrupt or trap gate from virtual-8086
mode when the handler’s code segment DPL is greater than 0.

Attempting to write a 1 into a reserved bit of CR4.

Attempting to execute a privileged instruction when the CPL is not equal to 0 (see Section 5.9, “Privileged
Instructions,” for a list of privileged instructions).

Attempting to execute SGDT, SIDT, SLDT, SMSW, or STR when CR4.UMIP = 1 and the CPL is not equal to 0.
Writing to a reserved bit in an MSR.
Accessing a gate that contains a null segment selector.

Executing the INT n instruction when the CPL is greater than the DPL of the referenced interrupt, trap, or task
gate.

The segment selector in a call, interrupt, or trap gate does not point to a code segment.

The segment selector operand in the LLDT instruction is a local type (TI flag is set) or does not point to a
segment descriptor of the LDT type.

The segment selector operand in the LTR instruction is local or points to a TSS that is not available.
The target code-segment selector for a call, jump, or return is null.

Vol. 3A 6-37

INTERRUPT AND EXCEPTION HANDLING

* If the PAE and/or PSE flag in control register CR4 is set and the processor detects any reserved bits in a page-
directory-pointer-table entry set to 1. These bits are checked during a write to control registers CR0, CR3, or
CR4 that causes a reloading of the page-directory-pointer-table entry.

* Attempting to write a non-zero value into the reserved bits of the MXCSR register.

® Executing an SSE/SSE2/SSE3 instruction that attempts to access a 128-bit memory location that is not aligned
on a 16-byte boundary when the instruction requires 16-byte alignment. This condition also applies to the stack
segment.

A program or task can be restarted following any general-protection exception. If the exception occurs while
attempting to call an interrupt handler, the interrupted program can be restartable, but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler's stack. If the fault condition was detected while
loading a segment descriptor, the error code contains a segment selector to or IDT vector number for the
descriptor; otherwise, the error code is 0. The source of the selector in an error code may be any of the following:

® An operand of the instruction.

® A selector from a gate which is the operand of the instruction.
®* A selector from a TSS involved in a task switch.

®* IDT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general-protection exception, because the invalid
instruction or operation is not executed. An exception handler can be designed to correct all of the conditions that
cause general-protection exceptions and restart the program or task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the commit-to-new-task
point (see Section 7.3, “Task Switching”). If it occurs before the commit point, no program state change occurs. If
it occurs after the commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The general-protection
exception handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS,
and GS registers without causing another exception. (See the Program State Change description for “Interrupt
10—Invalid TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

General Protection Exception in 64-bit Mode

The following conditions cause general-protection exceptions in 64-bit mode:

® If the memory address is in a non-canonical form.

* If a segment descriptor memory address is in non-canonical form.

* If the target offset in a destination operand of a call or jmp is in a non-canonical form.
* If a code segment or 64-bit call gate overlaps non-canonical space.

* If the code segment descriptor pointed to by the selector in the 64-bit gate doesn't have the L-bit set and the
D-bit clear.

® If the EFLAGS.NT bit is set in IRET.

* If the stack segment selector of IRET is null when going back to compatibility mode.

* If the stack segment selector of IRET is null going back to CPL3 and 64-bit mode.

® If a null stack segment selector RPL of IRET is not equal to CPL going back to non-CPL3 and 64-bit mode.
* If the proposed new code segment descriptor of IRET has both the D-bit and the L-bit set.

6-38 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

If the segment descriptor pointed to by the segment selector in the destination operand is a code segment and
it has both the D-bit and the L-bit set.

If the segment descriptor from a 64-bit call gate is in non-canonical space.

If the DPL from a 64-bit call-gate is less than the CPL or than the RPL of the 64-bit call-gate.
If the type field of the upper 64 bits of a 64-bit call gate is not 0.

If an attempt is made to load a null selector in the SS register in compatibility mode.

If an attempt is made to load null selector in the SS register in CPL3 and 64-bit mode.

If an attempt is made to load a null selector in the SS register in non-CPL3 and 64-bit mode where RPL is not
equal to CPL.

If an attempt is made to clear CR0O.PG while IA-32e mode is enabled.
If an attempt is made to set a reserved bit in CR3, CR4 or CR8.

Vol. 3A 6-39

INTERRUPT AND EXCEPTION HANDLING

Interrupt 14—Page-Fault Exception (#PF)

Exception Class Fault.

Description

Indicates that, with paging enabled (the PG flag in the CRO register is set), the processor detected one of the
following conditions while using the page-translation mechanism to translate a linear address to a physical
address:

The P (present) flag in a page-directory or page-table entry needed for the address translation is clear,
indicating that a page table or the page containing the operand is not present in physical memory.

The procedure does not have sufficient privilege to access the indicated page (that is, a procedure running in
user mode attempts to access a supervisor-mode page). If the SMAP flag is set in CR4, a page fault may also
be triggered by code running in supervisor mode that tries to access data at a user-mode address. If the PKE
flag is set in CR4, the PKRU register may cause page faults on data accesses to user-mode addresses with
certain protection keys.

Code running in user mode attempts to write to a read-only page. If the WP flag is set in CRO, the page fault
will also be triggered by code running in supervisor mode that tries to write to a read-only page.

An instruction fetch to a linear address that translates to a physical address in a memory page with the
execute-disable bit set (for information about the execute-disable bit, see Chapter 4, “Paging”). If the SMEP
flag is set in CR4, a page fault will also be triggered by code running in supervisor mode that tries to fetch an
instruction from a user-mode address.

One or more reserved bits in paging-structure entry are set to 1. See description below of RSVD error code flag.

An enclave access violates one of the specified access-control requirements. See Section 37.3, “Access-control
Requirements” and Section 37.19, “Enclave Page Cache Map (EPCM)” in Chapter 37, “Enclave Access Control
and Data Structures.” In this case, the exception is called an SGX-induced page fault. The processor uses the
error code (below) to distinguish SGX-induced page faults from ordinary page faults.

The exception handler can recover from page-not-present conditions and restart the program or task without any
loss of program continuity. It can also restart the program or task after a privilege violation, but the problem that
caused the privilege violation may be uncorrectable.

See also: Section 4.7, “Page-Fault Exceptions.”

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of information to aid in diag-
nosing the exception and recovering from it:

An error code on the stack. The error code for a page fault has a format different from that for other exceptions
(see Figure 6-9). The processor establishes the bits in the error code as follows:

— P flag (bit 0).
This flag is 0 if there is no translation for the linear address because the P flag was 0 in one of the paging-
structure entries used to translate that address.

— W/R (bit 1).
If the access causing the page-fault exception was a write, this flag is 1; otherwise, it is 0. This flag
describes the access causing the page-fault exception, not the access rights specified by paging.

— U/S (bit 2).
If a user-mode access caused the page-fault exception, this flag is 1; it is 0 if a supervisor-mode access did
so. This flag describes the access causing the page-fault exception, not the access rights specified by
paging.

— RSVD flag (bit 3).
This flag is 1 if there is no translation for the linear address because a reserved bit was set in one of the
paging-structure entries used to translate that address.

6-40 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

— [I/D flag (bit 4).
This flag is 1 if the access causing the page-fault exception was an instruction fetch. This flag describes the
access causing the page-fault exception, not the access rights specified by paging.

— PKflag (bit 5).
This flag is 1 if the access causing the page-fault exception was a data access to a user-mode address with
protection key disallowed by the value of the PKRU register.

— SGX flag (bit 15).
This flag is 1 if the exception is unrelated to paging and resulted from violation of SGX-specific access-
control requirements. Because such a violation can occur only if there is no ordinary page fault, this flag is
set only if the P flag (bit 0) is 1 and the RSVD flag (bit 3) and the PK flag (bit 5) are both 0.

See Section 4.6, “Access Rights” and Section 4.7, “Page-Fault Exceptions” for more information about page-
fault exceptions and the error codes that they produce.

31

=

5

d| o
an ~
sin| ™~
M| =

d o

AASY| w

Reserved

(%]
Reserved Q

P 0 The fault was caused by a non-present page.
1 The fault was caused by a page-level protection violation.

WIR 0 The access causing the fault was a read.
1 The access causing the fault was a write.

u/s 0 A supervisor-mode access caused the fault.
1 A user-mode access caused the fault.

RSVD 0 The fault was not caused by reserved bit violation.
1 The fault was caused by a reserved bit set to 1 in some
paging-structure entry.

I/D 0 The fault was not caused by an instruction fetch.
1 The fault was caused by an instruction fetch.

PK 0 The fault was not caused by protection keys.
1 There was a protection-key violation.

SGX 0 The fault is not related to SGX.
1 The fault resulted from violation of SGX-specific access-control
requirements.

Figure 6-9. Page-Fault Error Code

®* The contents of the CR2 register. The processor loads the CR2 register with the 32-bit linear address that
generated the exception. The page-fault handler can use this address to locate the corresponding page
directory and page-table entries. Another page fault can potentially occur during execution of the page-fault
handler; the handler should save the contents of the CR2 register before a second page fault can occur.® If a
page fault is caused by a page-level protection violation, the access flag in the page-directory entry is set when
the fault occurs. The behavior of IA-32 processors regarding the access flag in the corresponding page-table
entry is model specific and not architecturally defined.

6. Processors update CR2 whenever a page fault is detected. If a second page fault occurs while an earlier page fault is being deliv-
ered, the faulting linear address of the second fault will overwrite the contents of CR2 (replacing the previous address). These
updates to CR2 occur even if the page fault results in a double fault or occurs during the delivery of a double fault.

Vol. 3A 6-41

INTERRUPT AND EXCEPTION HANDLING

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the exception. If the
page-fault exception occurred during a task switch, the CS and EIP registers may point to the first instruction of the
new task (as described in the following “Program State Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the instruction that causes
the exception to be generated is not executed. After the page-fault exception handler has corrected the violation
(for example, loaded the missing page into memory), execution of the program or task can be resumed.

When a page-fault exception is generated during a task switch, the program-state may change, as follows. During
a task switch, a page-fault exception can occur during any of following operations:

®* While writing the state of the original task into the TSS of that task.

®* While reading the GDT to locate the TSS descriptor of the new task.

®* While reading the TSS of the new task.

®* While reading segment descriptors associated with segment selectors from the new task.

®* While reading the LDT of the new task to verify the segment registers stored in the new TSS.

In the last two cases the exception occurs in the context of the new task. The instruction pointer refers to the first
instruction of the new task, not to the instruction which caused the task switch (or the last instruction to be
executed, in the case of an interrupt). If the design of the operating system permits page faults to occur during
task-switches, the page-fault handler should be called through a task gate.

If a page fault occurs during a task switch, the processor will load all the state information from the new TSS
(without performing any additional limit, present, or type checks) before it generates the exception. The page-fault
handler should thus not rely on being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS
registers without causing another exception. (See the Program State Change description for “Interrupt 10—Invalid
TSS Exception (#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack switch does not cause
the processor to use an invalid stack pointer (SS:ESP). Software written for 16-bit IA-32 processors often use a
pair of instructions to change to a new stack, for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit IA-32 processors, it is possible to get a page fault, general-protec-
tion fault (#GP), or alignment check fault (#AC) after the segment selector has been loaded into the SS register
but before the ESP register has been loaded. At this point, the two parts of the stack pointer (SS and ESP) are
inconsistent. The new stack segment is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a well defined stack
(that is, the handler is a task or a more privileged procedure). However, if the exception handler is called at the
same privilege level and from the same task, the processor will attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the faulting task (with
trap or interrupt gates), software executing at the same privilege level as the exception handler should initialize a
new stack by using the LSS instruction rather than a pair of MOV instructions, as described earlier in this note.
When the exception handler is running at privilege level 0 (the normal case), the problem is limited to procedures
or tasks that run at privilege level 0, typically the kernel of the operating system.

6-42 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 16—x87 FPU Floating-Point Error (#MF)

Exception Class Fault.

Description

Indicates that the x87 FPU has detected a floating-point error. The NE flag in the register CRO must be set for an
interrupt 16 (floating-point error exception) to be generated. (See Section 2.5, “Control Registers,” for a detailed
description of the NE flag.)

NOTE
SIMD floating-point exceptions (#XM) are signaled through interrupt 19.

While executing x87 FPU instructions, the x87 FPU detects and reports six types of floating-point error conditions:
* Invalid operation (#I)
— Stack overflow or underflow (#1S)
— Invalid arithmetic operation (#IA)
®* Divide-by-zero (#2)
®* Denormalized operand (#D)
®* Numeric overflow (#0)
®* Numeric underflow (#U)
® Inexact result (precision) (#P)

Each of these error conditions represents an x87 FPU exception type, and for each of exception type, the x87 FPU
provides a flag in the x87 FPU status register and a mask bit in the x87 FPU control register. If the x87 FPU detects
a floating-point error and the mask bit for the exception type is set, the x87 FPU handles the exception automati-
cally by generating a predefined (default) response and continuing program execution. The default responses have
been designed to provide a reasonable result for most floating-point applications.

If the mask for the exception is clear and the NE flag in register CRO is set, the x87 FPU does the following:
1. Sets the necessary flag in the FPU status register.

2. Waits until the next “waiting” x87 FPU instruction or WAIT/FWAIT instruction is encountered in the program’s
instruction stream.

3. Generates an internal error signal that cause the processor to generate a floating-point exception (#MF).

Prior to executing a waiting x87 FPU instruction or the WAIT/FWAIT instruction, the x87 FPU checks for pending
x87 FPU floating-point exceptions (as described in step 2 above). Pending x87 FPU floating-point exceptions are
ignored for “non-waiting” x87 FPU instructions, which include the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions. Pending x87 FPU exceptions are also ignored when executing the state
management instructions FXSAVE and FXRSTOR.

All of the x87 FPU floating-point error conditions can be recovered from. The x87 FPU floating-point-error exception
handler can determine the error condition that caused the exception from the settings of the flags in the x87 FPU
status word. See “Software Exception Handling” in Chapter 8 of the Intel® 64 and 1A-32 Architectures Software
Developer’s Manual, Volume 1, for more information on handling x87 FPU floating-point exceptions.

Exception Error Code
None. The x87 FPU provides its own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruction that was about to
be executed when the floating-point-error exception was generated. This is not the faulting instruction in which the
error condition was detected. The address of the faulting instruction is contained in the x87 FPU instruction pointer

Vol. 3A 6-43

INTERRUPT AND EXCEPTION HANDLING

register. See Section 8.1.8, "x87 FPU Instruction and Data (Operand) Pointers” in Chapter 8 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 1, for more information about information the FPU saves
for use in handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies an x87 FPU floating-point exception because the handling of the
exception is delayed until the next waiting x87 FPU floating-point or WAIT/FWAIT instruction following the faulting
instruction. The x87 FPU, however, saves sufficient information about the error condition to allow recovery from the
error and re-execution of the faulting instruction if needed.

In situations where non- x87 FPU floating-point instructions depend on the results of an x87 FPU floating-point
instruction, a WAIT or FWAIT instruction can be inserted in front of a dependent instruction to force a pending x87
FPU floating-point exception to be handled before the dependent instruction is executed. See “x87 FPU Exception
Synchronization” in Chapter 8 of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1,
for more information about synchronization of x87 floating-point-error exceptions.

6-44 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 17—Alignment Check Exception (#AC)

Exception Class Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking was enabled. Align-
ment checks are only carried out in data (or stack) accesses (not in code fetches or system segment accesses). An
example of an alignment-check violation is a word stored at an odd byte address, or a doubleword stored at an
address that is not an integer multiple of 4. Table 6-7 lists the alignment requirements various data types recog-
nized by the processor.

Table 6-7. Alignment Requirements by Data Type
Data Type Address Must Be Divisible By
Word

Doubleword

Single-precision floating-point (32-bits)
Double-precision floating-point (64-bits)

Double extended-precision floating-point (80-bits)
Quadword

Double quadword

Segment Selector

32-bit Far Pointer

48-bit Far Pointer

32-bit Pointer

GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

A A VN =2 00O 00O N> DN

Note that the alignment check exception (#AC) is generated only for data types that must be aligned on word,
doubleword, and quadword boundaries. A general-protection exception (#GP) is generated 128-bit data types that
are not aligned on a 16-byte boundary.

To enable alignment checking, the following conditions must be true:
®* AM flag in CRO register is set.

®* AC flag in the EFLAGS register is set.

® The CPL is 3 (protected mode or virtual-8086 mode).

Alignment-check exceptions (#AC) are generated only when operating at privilege level 3 (user mode). Memory
references that default to privilege level 0, such as segment descriptor loads, do not generate alignment-check
exceptions, even when caused by a memory reference made from privilege level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege level 3 can generate
an alignment-check exception. Although application programs do not normally store these registers, the fault can
be avoided by aligning the information stored on an even word-address.

The FXSAVE/XSAVE and FXRSTOR/XRSTOR instructions save and restore a 512-byte data structure, the first byte
of which must be aligned on a 16-byte boundary. If the alignment-check exception (#AC) is enabled when
executing these instructions (and CPL is 3), a misaligned memory operand can cause either an alignment-check
exception or a general-protection exception (#GP) depending on the processor implementation (see "FXSAVE-
Save x87 FPU, MMX, SSE, and SSE2 State” and "FXRSTOR-Restore x87 FPU, MMX, SSE, and SSE2 State” in

Vol. 3A 6-45

INTERRUPT AND EXCEPTION HANDLING

Chapter 3 of the Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 2A; see "XSAVE—Save
Processor Extended States” and "XRSTOR—Restore Processor Extended States” in Chapter 5 of the Intel® 64 and
1A-32 Architectures Software Developer’s Manual, Volume 2C).

The MOVDQU, MOVUPS, and MOVUPD instructions perform 128-bit unaligned loads or stores. The LDDQU instruc-
tions loads 128-bit unaligned data. They do not generate general-protection exceptions (#GP) when operands are
not aligned on a 16-byte boundary. If alignment checking is enabled, alignment-check exceptions (#AC) may or
may not be generated depending on processor implementation when data addresses are not aligned on an 8-byte
boundary.

FSAVE and FRSTOR instructions can generate unaligned references, which can cause alignment-check faults. These
instructions are rarely needed by application programs.

Exception Error Code

Yes. The error code is null; all bits are clear except possibly bit 0 — EXT,; see Section 6.13. EXT is set if the #AC is
recognized during delivery of an event other than a software interrupt (see “INT n/INTO/INT3/INT1—Call to Inter-
rupt Procedure” in Chapter 3 of the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 2A).

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction is not executed.

6-46 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupt 18—Machine-Check Exception (#MC)

Exception Class Abort.

Description

Indicates that the processor detected an internal machine error or a bus error, or that an external agent detected
a bus error. The machine-check exception is model-specific, available on the Pentium and later generations of
processors. The implementation of the machine-check exception is different between different processor families,
and these implementations may not be compatible with future Intel 64 or IA-32 processors. (Use the CPUID
instruction to determine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the BINIT# and MCERR#
pins on the Pentium 4, Intel Xeon, and P6 family processors and the BUSCHK# pin on the Pentium processor. When
one of these pins is enabled, asserting the pin causes error information to be loaded into machine-check registers
and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter 15, “"Machine-
Check Architecture.” Also, see the data books for the individual processors for processor-specific hardware infor-
mation.

Exception Error Code
None. Error information is provide by machine-check MSRs.

Saved Instruction Pointer

For the Pentium 4 and Intel Xeon processors, the saved contents of extended machine-check state registers are
directly associated with the error that caused the machine-check exception to be generated (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR,” and Section 15.3.2.6, "IA32_MCG Extended Machine Check State MSRs").

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved contents of CS and EIP
registers are directly associated with the error that caused the machine-check exception to be generated; if the
flag is clear, the saved instruction pointer may not be associated with the error (see Section 15.3.1.2,
“IA32_MCG_STATUS MSR").

For the Pentium processor, contents of the CS and EIP registers may not be associated with the error.

Program State Change
The machine-check mechanism is enabled by setting the MCE flag in control register CR4.

For the Pentium 4, Intel Xeon, P6 family, and Pentium processors, a program-state change always accompanies a
machine-check exception, and an abort class exception is generated. For abort exceptions, information about the
exception can be collected from the machine-check MSRs, but the program cannot generally be restarted.

If the machine-check mechanism is not enabled (the MCE flag in control register CR4 is clear), a machine-check
exception causes the processor to enter the shutdown state.

Vol. 3A 6-47

INTERRUPT AND EXCEPTION HANDLING

Interrupt 19—SIMD Floating-Point Exception (#XM)

Exception Class Fault.

Description

Indicates the processor has detected an SSE/SSE2/SSE3 SIMD floating-point exception. The appropriate status
flag in the MXCSR register must be set and the particular exception unmasked for this interrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing an SSE/ SSE2/SSE3 SIMD
floating-point instruction:

® Invalid operation (#I)

* Divide-by-zero (#2)

® Denormal operand (#D)

®* Numeric overflow (#0)

® Numeric underflow (#U)

®* Inexact result (Precision) (#P)

The invalid operation, divide-by-zero, and denormal-operand exceptions are pre-computation exceptions; that is,
they are detected before any arithmetic operation occurs. The numeric underflow, numeric overflow, and inexact
result exceptions are post-computational exceptions.

See “"SIMD Floating-Point Exceptions” in Chapter 11 of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1, for additional information about the SIMD floating-point exception classes.

When a SIMD floating-point exception occurs, the processor does either of the following things:

* It handles the exception automatically by producing the most reasonable result and allowing program
execution to continue undisturbed. This is the response to masked exceptions.

® It generates a SIMD floating-point exception, which in turn invokes a software exception handler. This is the
response to unmasked exceptions.

Each of the six SIMD floating-point exception conditions has a corresponding flag bit and mask bit in the MXCSR
register. If an exception is masked (the corresponding mask bit in the MXCSR register is set), the processor takes
an appropriate automatic default action and continues with the computation. If the exception is unmasked (the
corresponding mask bit is clear) and the operating system supports SIMD floating-point exceptions (the OSXM-
MEXCPT flag in control register CR4 is set), a software exception handler is invoked through a SIMD floating-point
exception. If the exception is unmasked and the OSXMMEXCPT bit is clear (indicating that the operating system
does not support unmasked SIMD floating-point exceptions), an invalid opcode exception (#UD) is signaled instead
of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situation does not arise
where an x87 FPU instruction, a WAIT/FWAIT instruction, or another SSE/SSE2/SSE3 instruction will catch a
pending unmasked SIMD floating-point exception.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point exceptions were
masked (causing the corresponding exception flag to be set) and the SIMD floating-point exception was subse-
quently unmasked, then no exception is generated when the exception is unmasked.

When SSE/SSE2/SSE3 SIMD floating-point instructions operate on packed operands (made up of two or four sub-
operands), multiple SIMD floating-point exception conditions may be detected. If no more than one exception
condition is detected for one or more sets of sub-operands, the exception flags are set for each exception condition
detected. For example, an invalid exception detected for one sub-operand will not prevent the reporting of a divide-
by-zero exception for another sub-operand. However, when two or more exceptions conditions are generated for
one sub-operand, only one exception condition is reported, according to the precedences shown in Table 6-8. This
exception precedence sometimes results in the higher priority exception condition being reported and the lower
priority exception conditions being ignored.

6-48 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Table 6-8. SIMD Floating-Point Exceptions Priority

Priority Description

1 (Highest) Invalid operation exception due to SNaN operand (or any NaN operand for maximum, minimum, or certain compare and
convert operations).

2 QNaN operand’.
3 Any other invalid operation exception not mentioned above or a divide-by-zero exception®.
4 Denormal operand exception®.

5 Numeric overflow and underflow exceptions possibly in conjunction with the inexact result exception®.

6 (Lowest) Inexact result exception.

NOTES:

1. Though a QNaN this is not an exception, the handling of a QNaN operand has precedence over lower priority exceptions. For exam-
ple, a QNaN divided by zero results in a QNaN, not a divide-by-zero- exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

Exception Error Code
None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the SSE/SSE2/SSE3 instruction that was executed when the
SIMD floating-point exception was generated. This is the faulting instruction in which the error condition was
detected.

Program State Change

A program-state change does not accompany a SIMD floating-point exception because the handling of the excep-
tion is immediate unless the particular exception is masked. The available state information is often sufficient to
allow recovery from the error and re-execution of the faulting instruction if needed.

Vol. 3A 6-49

INTERRUPT AND EXCEPTION HANDLING

Interrupt 20—Virtualization Exception (#VE)

Exception Class Fault.

Description

Indicates that the processor detected an EPT violation in VMX non-root operation. Not all EPT violations cause virtu-
alization exceptions. See Section 25.5.6.2 for details.

The exception handler can recover from EPT violations and restart the program or task without any loss of program
continuity. In some cases, however, the problem that caused the EPT violation may be uncorrectable.

Exception Error Code

None.

Saved Instruction Pointer
The saved contents of CS and EIP registers generally point to the instruction that generated the exception.

Program State Change

A program-state change does not normally accompany a virtualization exception, because the instruction that
causes the exception to be generated is not executed. After the virtualization exception handler has corrected the
violation (for example, by executing the EPTP-switching VM function), execution of the program or task can be
resumed.

Additional Exception-Handling Information

The processor saves information about virtualization exceptions in the virtualization-exception information area.
See Section 25.5.6.2 for details.

6-50 Vol. 3A

INTERRUPT AND EXCEPTION HANDLING

Interrupts 32 to 255—User Defined Interrupts

Exception Class Not applicable.

Description
Indicates that the processor did one of the following things:
®* Executed an INT n instruction where the instruction operand is one of the vector numbers from 32 through 255.

®* Responded to an interrupt request at the INTR pin or from the local APIC when the interrupt vector number
associated with the request is from 32 through 255.

Exception Error Code
Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n instruction or instruction
following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or the INTR signal. The
INT n instruction generates the interrupt within the instruction stream. When the processor receives an INTR
signal, it commits all state changes for all previous instructions before it responds to the interrupt; so, program
execution can resume upon returning from the interrupt handler.

Vol. 3A 6-51

INTERRUPT AND EXCEPTION HANDLING

6-52 Vol. 3A

10.Updates to Chapter 7, Volume 3A

Change bars show changes to Chapter 7 of the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A: System Programming Guide, Part 1.

Changes to this chapter: Updates to Section 7.3 “Task Switching” and Section 7.7 “Task Management in 64-bit
Mode”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 19

CHAPTER 7
TASK MANAGEMENT

This chapter describes the IA-32 architecture’s task management facilities. These facilities are only available when
the processor is running in protected mode.

This chapter focuses on 32-bit tasks and the 32-bit TSS structure. For information on 16-bit tasks and the 16-bit
TSS structure, see Section 7.6, “16-Bit Task-State Segment (TSS).” For information specific to task management in
64-bit mode, see Section 7.7, “Task Management in 64-bit Mode.”

7.1 TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to execute a program,
a task or process, an operating-system service utility, an interrupt or exception handler, or a kernel or executive
utility.

The IA-32 architecture provides a mechanism for saving the state of a task, for dispatching tasks for execution, and
for switching from one task to another. When operating in protected mode, all processor execution takes place from
within a task. Even simple systems must define at least one task. More complex systems can use the processor’s
task management facilities to support multitasking applications.

7.1.1 Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task execution space
consists of a code segment, a stack segment, and one or more data segments (see Figure 7-1). If an operating
system or executive uses the processor’s privilege-level protection mechanism, the task execution space also
provides a separate stack for each privilege level.

The TSS specifies the segments that make up the task execution space and provides a storage place for task state
information. In multitasking systems, the TSS also provides a mechanism for linking tasks.

A task is identified by the segment selector for its TSS. When a task is loaded into the processor for execution, the
segment selector, base address, limit, and segment descriptor attributes for the TSS are loaded into the task
register (see Section 2.4.4, “Task Register (TR)").

If paging is implemented for the task, the base address of the page directory used by the task is loaded into control
register CR3.

Vol. 3A 7-1

TASK MANAGEMENT

Code
’_> Segment
Task-State Data
Segment —\—> Segment
(TSS) Stack
o | Segment
~| (Current Priv.
Level)
Stack Seg.
» Priv. Level 0
Stack Seg.
_|:| > Priv. Level 1
Task Register Stack
E— > _Segment
CR3 (Priv. Level 2)

Figure 7-1. Structure of a Task

7.1.2 Task State

The following items define the state of the currently executing task:

The task’s current execution space, defined by the segment selectors in the segment registers (CS, DS, SS, ES,
FS, and GS).

The state of the general-purpose registers.

The state of the EFLAGS register.

The state of the EIP register.

The state of control register CR3.

The state of the task register.

The state of the LDTR register.

The I/O map base address and I/O map (contained in the TSS).

Stack pointers to the privilege 0, 1, and 2 stacks (contained in the TSS).
Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of the task register.
Also, the complete contents of the LDTR register are not contained in the TSS, only the segment selector for the
LDT.

7.1.3 Executing a Task

Software or the processor can dispatch a task for execution in one of the following ways:

A explicit call to a task with the CALL instruction.

A explicit jump to a task with the JMP instruction.

An implicit call (by the processor) to an interrupt-handler task.

An implicit call to an exception-handler task.

A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is set.

All of these methods for dispatching a task identify the task to be dispatched with a segment selector that points to
a task gate or the TSS for the task. When dispatching a task with a CALL or JMP instruction, the selector in the
instruction may select the TSS directly or a task gate that holds the selector for the TSS. When dispatching a task

7-2 Vol. 3A

TASK MANAGEMENT

to handle an interrupt or exception, the IDT entry for the interrupt or exception must contain a task gate that holds
the selector for the interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch occurs between the currently running task and the
dispatched task. During a task switch, the execution environment of the currently executing task (called the task’s
state or context) is saved in its TSS and execution of the task is suspended. The context for the dispatched task is
then loaded into the processor and execution of that task begins with the instruction pointed to by the newly loaded
EIP register. If the task has not been run since the system was last initialized, the EIP will point to the first instruc-
tion of the task’s code; otherwise, it will point to the next instruction after the last instruction that the task
executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task), the TSS
segment selector for the calling task is stored in the TSS of the called task to provide a link back to the calling task.

For all IA-32 processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor performs a task
switch to handle the interrupt or exception and automatically switches back to the interrupted task upon returning
from the interrupt-handler task or exception-handler task. This mechanism can also handle interrupts that occur
during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have a different logical-
to-physical address mapping for LDT-based segments. The page-directory base register (CR3) also is reloaded on a
task switch, allowing each task to have its own set of page tables. These protection facilities help isolate tasks and
prevent them from interfering with one another.

If protection mechanisms are not used, the processor provides no protection between tasks. This is true even with
operating systems that use multiple privilege levels for protection. A task running at privilege level 3 that uses the
same LDT and page tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.

Use of task management facilities for handling multitasking applications is optional. Multitasking can be handled in
software, with each software defined task executed in the context of a single IA-32 architecture task.

7.2 TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
®* Task-state segment (TSS).

®* Task-gate descriptor.

® TSS descriptor.

®* Task register.

®* NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at least one task, and the
segment selector for the TSS must be loaded into the task register (using the LTR instruction).

7.2.1 Task-State Segment (TSS)

The processor state information needed to restore a task is saved in a system segment called the task-state
segment (TSS). Figure 7-2 shows the format of a TSS for tasks designed for 32-bit CPUs. The fields of a TSS are
divided into two main categories: dynamic fields and static fields.

For information about 16-bit Intel 286 processor task structures, see Section 7.6, “16-Bit Task-State Segment
(TSS).” For information about 64-bit mode task structures, see Section 7.7, “Task Management in 64-bit Mode.”

Vol.3A 7-3

TASK MANAGEMENT

31 15 0
I/O Map Base Address Reserved T| 100
Reserved LDT Segment Selector 96
Reserved GS 92
Reserved FS 88
Reserved DS 84
Reserved SS 80
Reserved CS 76
Reserved ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
Reserved ‘ SS2 24
ESP2 20
Reserved ‘ SS1 16
ESP1 12
Reserved ‘ SS0
ESPO
Reserved ‘ Previous Task Link
I:l Reserved bits. Set to 0.

Figure 7-2. 32-Bit Task-State Segment (TSS)

The processor updates dynamic fields when a task is suspended during a task switch. The following are dynamic
fields:

General-purpose register fields — State of the EAX, ECX, EDX, EBX, ESP, EBP, ESI, and EDI registers prior
to the task switch.

Segment selector fields — Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to the
task switch.

EFLAGS register field — State of the EFAGS register prior to the task switch.
EIP (instruction pointer) field — State of the EIP register prior to the task switch.

Previous task link field — Contains the segment selector for the TSS of the previous task (updated on a task
switch that was initiated by a call, interrupt, or exception). This field (which is sometimes called the back link
field) permits a task switch back to the previous task by using the IRET instruction.

The processor reads the static fields, but does not normally change them. These fields are set up when a task is
created. The following are static fields:

LDT segment selector field — Contains the segment selector for the task's LDT.

7-4 Vol. 3A

TASK MANAGEMENT

®* CR3control register field — Contains the base physical address of the page directory to be used by the task.
Control register CR3 is also known as the page-directory base register (PDBR).

®* Privilege level-0, -1, and -2 stack pointer fields — These stack pointers consist of a logical address made
up of the segment selector for the stack segment (SS0, SS1, and SS2) and an offset into the stack (ESPO,
ESP1, and ESP2). Note that the values in these fields are static for a particular task; whereas, the SS and ESP
values will change if stack switching occurs within the task.

®* T (debug trap) flag (byte 100, bit 0) — When set, the T flag causes the processor to raise a debug exception
when a task switch to this task occurs (see Section 17.3.1.5, “Task-Switch Exception Condition”).

®* 1/0 map base address field — Contains a 16-bit offset from the base of the TSS to the I/O permission bit
map and interrupt redirection bitmap. When present, these maps are stored in the TSS at higher addresses.
The I/O map base address points to the beginning of the I/O permission bit map and the end of the interrupt
redirection bit map. See Chapter 18, “Input/Output,” in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 1, for more information about the I/O permission bit map. See Section 20.3,
“Interrupt and Exception Handling in Virtual-8086 Mode,” for a detailed description of the interrupt redirection
bit map.

If paging is used:

®* Avoid placing a page boundary in the part of the TSS that the processor reads during a task switch (the first 104
bytes). The processor may not correctly perform address translations if a boundary occurs in this area. During
a task switch, the processor reads and writes into the first 104 bytes of each TSS (using contiguous physical
addresses beginning with the physical address of the first byte of the TSS). So, after TSS access begins, if part
of the 104 bytes is not physically contiguous, the processor will access incorrect information without generating
a page-fault exception.

® Pages corresponding to the previous task’s TSS, the current task’s TSS, and the descriptor table entries for
each all should be marked as read/write.

®* Task switches are carried out faster if the pages containing these structures are present in memory before the
task switch is initiated.

7.2.2 TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 7-3 shows the format of a TSS
descriptor. TSS descriptors may only be placed in the GDT; they cannot be placed in an LDT or the IDT.

An attempt to access a TSS using a segment selector with its TI flag set (which indicates the current LDT) causes
a general-protection exception (#GP) to be generated during CALLs and JMPs; it causes an invalid TSS exception
(#TS) during IRETs. A general-protection exception is also generated if an attempt is made to load a segment
selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently running or suspended.
A type field with a value of 1001B indicates an inactive task; a value of 1011B indicates a busy task. Tasks are not
recursive. The processor uses the busy flag to detect an attempt to call a task whose execution has been inter-
rupted. To insure that there is only one busy flag is associated with a task, each TSS should have only one TSS
descriptor that points to it.

Vol.3A 7-5

TASK MANAGEMENT

TSS Descriptor

31 242322 212019 1615 1413 12 11 8 7 0
A _— D Type
Base31:24 [G|ojo|v| ML Ip| p yp Base 23:16 |4
L : L |of1 ‘ 0 | B‘ 1
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 7-3. TSS Descriptor

The base, limit, and DPL fields and the granularity and present flags have functions similar to their use in data-
segment descriptors (see Section 3.4.5, "Segment Descriptors”). When the G flag is 0 in a TSS descriptor for a 32-
bit TSS, the limit field must have a value equal to or greater than 67H, one byte less than the minimum size of a
TSS. Attempting to switch to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS excep-
tion (#TS). A larger limit is required if an I/O permission bit map is included or if the operating system stores addi-
tional data. The processor does not check for a limit greater than 67H on a task switch; however, it does check
when accessing the I/0 permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is humerically equal to or less than
the DPL of the TSS descriptor) can dispatch the task with a call or a jump.

In most systems, the DPLs of TSS descriptors are set to values less than 3, so that only privileged software can
perform task switching. However, in multitasking applications, DPLs for some TSS descriptors may be set to 3 to
allow task switching at the application (or user) privilege level.

7.2.3 TSS Descriptor in 64-bit mode

In 64-bit mode, task switching is not supported, but TSS descriptors still exist. The format of a 64-bit TSS is
described in Section 7.7.

In 64-bit mode, the TSS descriptor is expanded to 16 bytes (see Figure 7-4). This expansion also applies to an LDT
descriptor in 64-bit mode. Table 3-2 provides the encoding information for the segment type field.

7-6 Vol. 3A

TASK MANAGEMENT

TSS (or LDT) Descriptor

31 1312 8 7 0
Reserved 0 Reserved 12
31 0
Base Address 63:32 8
31 242322212019 16 1514 1312 11 8 7 0
A imi D Type
Base3124 |a|o|o|vy| Lmt |p| p yp Base23:16 |4
19:16
L L |0
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 7-4. Format of TSS and LDT Descriptors in 64-bit Mode

724 Task Register

The task register holds the 16-bit segment selector and the entire segment descriptor (32-bit base address (64 bits
in IA-32e mode), 16-bit segment limit, and descriptor attributes) for the TSS of the current task (see Figure 2-6).
This information is copied from the TSS descriptor in the GDT for the current task. Figure 7-5 shows the path the
processor uses to access the TSS (using the information in the task register).

The task register has a visible part (that can be read and changed by software) and an invisible part (maintained
by the processor and is inaccessible by software). The segment selector in the visible portion points to a TSS
descriptor in the GDT. The processor uses the invisible portion of the task register to cache the segment descriptor
for the TSS. Caching these values in a register makes execution of the task more efficient. The LTR (load task
register) and STR (store task register) instructions load and read the visible portion of the task register:

The LTR instruction loads a segment selector (source operand) into the task register that points to a TSS descriptor
in the GDT. It then loads the invisible portion of the task register with information from the TSS descriptor. LTR is a
privileged instruction that may be executed only when the CPL is 0. It’s used during system initialization to put an
initial value in the task register. Afterwards, the contents of the task register are changed implicitly when a task
switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a general-purpose register
or memory. This instruction can be executed by code running at any privilege level in order to identify the currently
running task. However, it is normally used only by operating system software. (If CR4.UMIP = 1, STR can be
executed only when CPL = 0.)

On power up or reset of the processor, segment selector and base address are set to the default value of 0; the limit
is set to FFFFH.

Vol.3A 7-7

TASK MANAGEMENT

TSS
@

A
Visible Part Invisible Part
Reg-li-gtsekr Selector Base Address Segment Limit
A
GDT
> TSS Descriptor

0

Figure 7-5. Task Register

7.2.5 Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to a task (see Figure 7-6). It can be placed in the
GDT, an LDT, or the IDT. The TSS segment selector field in a task-gate descriptor points to a TSS descriptor in the
GDT. The RPL in this segment selector is not used.

The DPL of a task-gate descriptor controls access to the TSS descriptor during a task switch. When a program or
procedure makes a call or jump to a task through a task gate, the CPL and the RPL field of the gate selector pointing
to the task gate must be less than or equal to the DPL of the task-gate descriptor. Note that when a task gate is
used, the DPL of the destination TSS descriptor is not used.

31 16 15 14 13 12 11 8 7 0
D Type
Reserved Pl p s Reserved 4
0|0 |1 ‘0| 1
31 16 15 0
TSS Segment Selector Reserved 0

DPL Descriptor Privilege Level
P Segment Present
TYPE Segment Type

Figure 7-6. Task-Gate Descriptor

7-8 Vol. 3A

TASK MANAGEMENT

A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these structures satisfy
the following needs:

Need for a task to have only one busy flag — Because the busy flag for a task is stored in the TSS
descriptor, each task should have only one TSS descriptor. There may, however, be several task gates that
reference the same TSS descriptor.

Need to provide selective access to tasks — Task gates fill this need, because they can reside in an LDT and
can have a DPL that is different from the TSS descriptor's DPL. A program or procedure that does not have
sufficient privilege to access the TSS descriptor for a task in the GDT (which usually has a DPL of 0) may be
allowed access to the task through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

Need for an interrupt or exception to be handled by an independent task — Task gates may also reside
in the IDT, which allows interrupts and exceptions to be handled by handler tasks. When an interrupt or
exception vector points to a task gate, the processor switches to the specified task.

Figure 7-7 illustrates how a task gate in an LDT, a task gate in the GDT, and a task gate in the IDT can all point to
the same task.

LDT GDT TSS
Task Gate
Task Gate > TSS Descriptor
IDT
Task Gate e

Figure 7-7. Task Gates Referencing the Same Task

7.3 TASK SWITCHING

The processor transfers execution to another task in one of four cases:

The current program, task, or procedure executes a JMP or CALL instruction to a TSS descriptor in the GDT.

The current program, task, or procedure executes a JMP or CALL instruction to a task-gate descriptor in the
GDT or the current LDT.

Vol.3A 7-9

TASK MANAGEMENT

An interrupt or exception vector points to a task-gate descriptor in the IDT.
The current task executes an IRET when the NT flag in the EFLAGS register is set.

JMP, CALL, and IRET instructions, as well as interrupts and exceptions, are all mechanisms for redirecting a
program. The referencing of a TSS descriptor or a task gate (when calling or jumping to a task) or the state of the
NT flag (when executing an IRET instruction) determines whether a task switch occurs.

The processor performs the following operations when switching to a new task:

1.

10.

11.
12.

13.

Obtains the TSS segment selector for the new task as the operand of the JMP or CALL instruction, from a task
gate, or from the previous task link field (for a task switch initiated with an IRET instruction).

Checks that the current (old) task is allowed to switch to the new task. Data-access privilege rules apply to JMP
and CALL instructions. The CPL of the current (old) task and the RPL of the segment selector for the new task
must be less than or equal to the DPL of the TSS descriptor or task gate being referenced. Exceptions,
interrupts (except for those identified in the next sentence), and the IRET and INT1 instructions are permitted
to switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For interrupts generated by
the INT n, INT3, and INTO instructions, the DPL is checked and a general-protection exception (#GP) results if
it is less than the CPL.!

Checks that the TSS descriptor of the new task is marked present and has a valid limit (greater than or equal
to 67H).

Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET return).

Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task switch are paged into
system memory.

If the task switch was initiated with a JMP or IRET instruction, the processor clears the busy (B) flag in the
current (old) task’s TSS descriptor; if initiated with a CALL instruction, an exception, or an interrupt: the busy
(B) flag is left set. (See Table 7-2.)

If the task switch was initiated with an IRET instruction, the processor clears the NT flag in a temporarily saved
image of the EFLAGS register; if initiated with a CALL or JMP instruction, an exception, or an interrupt, the NT
flag is left unchanged in the saved EFLAGS image.

Saves the state of the current (old) task in the current task’s TSS. The processor finds the base address of the
current TSS in the task register and then copies the states of the following registers into the current TSS: all the
general-purpose registers, segment selectors from the segment registers, the temporarily saved image of the
EFLAGS register, and the instruction pointer register (EIP).

If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the processor will set the
NT flag in the EFLAGS loaded from the new task. If initiated with an IRET instruction or JMP instruction, the NT
flag will reflect the state of NT in the EFLAGS loaded from the new task (see Table 7-2).

If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or an interrupt, the
processor sets the busy (B) flag in the new task’s TSS descriptor; if initiated with an IRET instruction, the busy
(B) flag is left set.

Loads the task register with the segment selector and descriptor for the new task's TSS.

The TSS state is loaded into the processor. This includes the LDTR register, the PDBR (control register CR3), the
EFLAGS register, the EIP register, the general-purpose registers, and the segment selectors. A fault during the
load of this state may corrupt architectural state. (If paging is not enabled, a PDBR value is read from the new
task's TSS, but it is not loaded into CR3.)

The descriptors associated with the segment selectors are loaded and qualified. Any errors associated with this
loading and qualification occur in the context of the new task and may corrupt architectural state.

NOTES

If all checks and saves have been carried out successfully, the processor commits to the task
switch. If an unrecoverable error occurs in steps 1 through 11, the processor does not complete the
task switch and insures that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch.

1.

The INT1 has opcode F1; the INT ninstruction with n=1 has opcode CD 01.

7-10 Vol. 3A

TASK MANAGEMENT

If an unrecoverable error occurs in step 12, architectural state may be corrupted, but an attempt
will be made to handle the error in the prior execution environment. If an unrecoverable error
occurs after the commit point (in step 13), the processor completes the task switch (without
performing additional access and segment availability checks) and generates the appropriate
exception prior to beginning execution of the new task.

If exceptions occur after the commit point, the exception handler must finish the task switch itself
before allowing the processor to begin executing the new task. See Chapter 6, “Interrupt
10—Invalid TSS Exception (#TS),” for more information about the affect of exceptions on a task
when they occur after the commit point of a task switch.

14. Begins executing the new task. (To an exception handler, the first instruction of the new task appears not to
have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs. If the task is
resumed, execution starts with the instruction pointed to by the saved EIP value, and the registers are restored to
the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilege level from the suspended
task. The new task begins executing at the privilege level specified in the CPL field of the CS register, which is
loaded from the TSS. Because tasks are isolated by their separate address spaces and TSSs and because privilege
rules control access to a TSS, software does not need to perform explicit privilege checks on a task switch.

Table 7-1 shows the exception conditions that the processor checks for when switching tasks. It also shows the
exception that is generated for each check if an error is detected and the segment that the error code references.
(The order of the checks in the table is the order used in the P6 family processors. The exact order is model specific
and may be different for other IA-32 processors.) Exception handlers designed to handle these exceptions may be
subject to recursive calls if they attempt to reload the segment selector that generated the exception. The cause of
the exception (or the first of multiple causes) should be fixed before reloading the selector.

Table 7-1. Exception Conditions Checked During a Task Switch

Condition Checked Exception’ Error Code Reference?
Segment selector for a TSS descriptor references #GP New Task's TSS
the GDT and is within the limits of the table. H#TS (for IRET)
P bit is set in TSS descriptor. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a call, interrupt, or #GP (for JMP, CALL, INT) | Task’s back-link TSS
exception).
TSS descriptor is not busy (for task switch initiated by an IRET instruction). #TS (for IRET) New Task's TSS
TSS segment limit greater than or equal to 108 (for 32-bit TSS) or 44 (for 16-bit |#TS New Task's TSS
TSS).
Registers are loaded from the values in the TSS.
LDT segment selector of new task is valid 3. #TS New Task's LDT
If code segment is non-conforming, its DPL should equal its RPL. #TS New Code Segment
If code segment is conforming, its DPL should be less than or equal to its RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
P bit is set in stack segment descriptor. #SS New Stack Segment
Stack segment DPL should equal CPL. #TS New stack segment
P bit is set in new task's LDT descriptor. #TS New Task's LDT
CS segment selector is valid 3. #TS New Code Segment
P bit is set in code segment descriptor. #NP New Code Segment
Stack segment DPL should equal its RPL. #TS New Stack Segment
DS, €S, FS, and GS segment selectors are valid 3. #TS New Data Segment

Vol. 3A 7-11

TASK MANAGEMENT

Table 7-1. Exception Conditions Checked During a Task Switch (Contd.)

Condition Checked Exception’ Error Code Reference?
DS, €S, FS, and GS segments are readable. #TS New Data Segment
P bits are set in descriptors of DS, ES, FS, and GS segments. #NP New Data Segment
DS, €S, FS, and GS segment DPL greater than or equal to CPL (unless these are #TS New Data Segment
conforming segments).
NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS exception, and #SS is stack-fault
exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within the table’s segment limit,
and refers to a compatible type of descriptor (for example, a segment selector in the CS register only is valid when it points to a
code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time a task switch occurs. System software uses
the TS flag to coordinate the actions of floating-point unit when generating floating-point exceptions with the rest
of the processor. The TS flag indicates that the context of the floating-point unit may be different from that of the
current task. See Section 2.5, “Control Registers”, for a detailed description of the function and use of the TS flag.

7.4 TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the EFLAGS register are
used to return execution to the previous task. EFLAGS.NT = 1 indicates that the currently executing task is nested
within the execution of another task.

When a CALL instruction, an interrupt, or an exception causes a task switch: the processor copies the segment
selector for the current TSS to the previous task link field of the TSS for the new task; it then sets EFLAGS.NT = 1.
If software uses an IRET instruction to suspend the new task, the processor checks for EFLAGS.NT = 1; it then uses
the value in the previous task link field to return to the previous task. See Figures 7-8.

When a JMP instruction causes a task switch, the new task is not nested. The previous task link field is not used and
EFLAGS.NT = 0. Use a JMP instruction to dispatch a new task when nesting is not desired.

Top Level Nested More Deeply Currently Executing
Task Task Nested Task Task
TSS TSS TSS EFLAGS

NT=1

NT=0 NT=1 NT=1

Previous Previous Previous

Task Link Task Link Task Link Task Register

NI

Figure 7-8. Nested Tasks

Table 7-2 shows the busy flag (in the TSS segment descriptor), the NT flag, the previous task link field, and TS flag
(in control register CRO) during a task switch.

The NT flag may be modified by software executing at any privilege level. It is possible for a program to set the NT
flag and execute an IRET instruction. This might randomly invoke the task specified in the previous link field of the
current task's TSS. To keep such spurious task switches from succeeding, the operating system should initialize the

7-12 Vol. 3A

previous task link field in every TSS that it creates to 0.

TASK MANAGEMENT

Table 7-2. €ffect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field, and TS Flag

Flag or Field Effect of JMP instruction Effect of CALL Instruction or Effect of IRET
Interrupt Instruction

Busy (B) flag of new task. Flag is set. Must have been Flag is set. Must have been No change. Must have been set.
clear before. clear before.

Busy flag of old task. Flag is cleared. No change. Flag is currently Flag is cleared.

set.

NT flag of new task. Set to value from TSS of new Flag is set. Set to value from TSS of new
task. task.

NT flag of old task. No change. No change. Flag is cleared.

Previous task link field of new | No change. Loaded with selector No change.

task. for old task's TSS.

Previous task link field of old No change. No change. No change.

task.

TS flag in control register CRO. | Flag is set. Flag is set. Flag is set.

7.4.1 Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called (dispatched), a recursive (or
re-entrant) call to the task would cause the current state of the task to be lost. The busy flag in the TSS segment
descriptor is provided to prevent re-entrant task switching and a subsequent loss of task state information. The
processor manages the busy flag as follows:

1. When dispatching a task, the processor sets the busy flag of the new task.

2. If during a task switch, the current task is placed in a nested chain (the task switch is being generated by a
CALL instruction, an interrupt, or an exception), the busy flag for the current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception), the processor
generates a general-protection exception (#GP) if the busy flag of the new task is already set. If the task switch
is initiated with an IRET instruction, the exception is not raised because the processor expects the busy flag to
be set.

4. When a task is terminated by a jump to a new task (initiated with a JMP instruction in the task code) or by an
IRET instruction in the task code, the processor clears the busy flag, returning the task to the “not busy” state.

The processor prevents recursive task switching by preventing a task from switching to itself or to any task in a
nested chain of tasks. The chain of nested suspended tasks may grow to any length, due to multiple calls, inter-
rupts, or exceptions. The busy flag prevents a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a LOCK protocol (on the
bus or in the cache) when it sets or clears the busy flag. This lock keeps two processors from invoking the same
task at the same time. See Section 8.1.2.1, “"Automatic Locking,” for more information about setting the busy flag
in @ multiprocessor applications.

7.4.2 Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of linked tasks, use the
following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that suspended the task to be
removed). It is assumed that the pre-empting task is the next task (newer task) in the chain from the task to
be removed. Change the previous task link field to point to the TSS of the next oldest task in the chain or to an
even older task in the chain.

Vol.3A 7-13

TASK MANAGEMENT

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the chain. If more than
one task is being removed from the chain, the busy flag for each task being remove must be cleared.

4. Enable interrupts.

In a multiprocessing system, additional synchronization and serialization operations must be added to this proce-
dure to insure that the TSS and its segment descriptor are both locked when the previous task link field is changed
and the busy flag is cleared.

7.5 TASK ADDRESS SPACE

The address space for a task consists of the segments that the task can access. These segments include the code,
data, stack, and system segments referenced in the TSS and any other segments accessed by the task code. The
segments are mapped into the processor’s linear address space, which is in turn mapped into the processor’s phys-
ical address space (either directly or through paging).

The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its own LDT allows the
task address space to be isolated from other tasks by placing the segment descriptors for all the segments associ-
ated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a memory-efficient way to allow specific tasks to
communicate with or control each other, without dropping the protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accessed through segment
descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task to have its own set of page tables for
mapping linear addresses to physical addresses. Or, several tasks can share the same set of page tables.

7.5.1 Mapping Tasks to the Linear and Physical Address Spaces

Tasks can be mapped to the linear address space and physical address space in one of two ways:

® One linear-to-physical address space mapping is shared among all tasks. — When paging is not
enabled, this is the only choice. Without paging, all linear addresses map to the same physical addresses. When
paging is enabled, this form of linear-to-physical address space mapping is obtained by using one page
directory for all tasks. The linear address space may exceed the available physical space if demand-paged
virtual memory is supported.

®* Each task has its own linear address space that is mapped to the physical address space. — This form
of mapping is accomplished by using a different page directory for each task. Because the PDBR (control
register CR3) is loaded on task switches, each task may have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses. If the entries of
different page directories point to different page tables and the page tables point to different pages of physical
memory, then the tasks do not share physical addresses.

With either method of mapping task linear address spaces, the TSSs for all tasks must lie in a shared area of the
physical space, which is accessible to all tasks. This mapping is required so that the mapping of TSS addresses does
not change while the processor is reading and updating the TSSs during a task switch. The linear address space
mapped by the GDT also should be mapped to a shared area of the physical space; otherwise, the purpose of the
GDT is defeated. Figure 7-9 shows how the linear address spaces of two tasks can overlap in the physical space by
sharing page tables.

7-14 Vol. 3A

TASK MANAGEMENT

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS >
PTE N Task A
PTE >
PDBR > PDE > PTE 7 Task A
PDE 7
Shared PT >
Shared
PTE [=
3 PTE Shared
Task B TSS T
Task B
PDBR » PDE |- PTE | =
PDE > PTE T Task B

Figure 7-9. Overlapping Linear-to-Physical Mappings

7.5.2 Task Logical Address Space

To allow the sharing of data among tasks, use the following techniques to create shared logical-to-physical
address-space mappings for data segments:

Through the segment descriptors in the GDT — All tasks must have access to the segment descriptors in
the GDT. If some segment descriptors in the GDT point to segments in the linear-address space that are
mapped into an area of the physical-address space common to all tasks, then all tasks can share the data and
code in those segments.

Through a shared LDT — Two or more tasks can use the same LDT if the LDT fields in their TSSs point to the
same LDT. If some segment descriptors in a shared LDT point to segments that are mapped to a common area
of the physical address space, the data and code in those segments can be shared among the tasks that share
the LDT. This method of sharing is more selective than sharing through the GDT, because the sharing can be
limited to specific tasks. Other tasks in the system may have different LDTs that do not give them access to the
shared segments.

Through segment descriptors in distinct LDTs that are mapped to common addresses in linear
address space — If this common area of the linear address space is mapped to the same area of the physical
address space for each task, these segment descriptors permit the tasks to share segments. Such segment
descriptors are commonly called aliases. This method of sharing is even more selective than those listed above,
because, other segment descriptors in the LDTs may point to independent linear addresses which are not
shared.

7.6 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit IA-32 processors also recognize a 16-bit TSS format like the one used in Intel 286 processors (see
Figure 7-10). This format is supported for compatibility with software written to run on earlier IA-32 processors.

The following information is important to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSS is 2CH.

Vol.3A 7-15

TASK MANAGEMENT

® The 16-bit TSS does not contain a field for the base address of the page directory, which is loaded into control
register CR3. A separate set of page tables for each task is not supported for 16-bit tasks. If a 16-bit task is
dispatched, the page-table structure for the previous task is used.

®* The I/O base address is not included in the 16-bit TSS. None of the functions of the I/O map are supported.
® When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the EIP register are lost.

®* When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16 bits of the registers
are modified and not maintained.

15 0
Task LDT Selector 42
DS Selector 40
SS Selector 38
CS Selector 36
ES Selector 34
DI 32
SI 30
BP 28
SP 26
BX 24
DX 22
CX 20
AX 18
FLAG Word 16
IP (Entry Point) 14
SS2 12
SP2 10
SS1 8
SP1 6
SS0 4
SPO 2
Previous Task Link 0

Figure 7-10. 16-Bit TSS Format

7.7 TASK MANAGEMENT IN 64-BIT MODE

In 64-bit mode, task structure and task state are similar to those in protected mode. However, the task switching
mechanism available in protected mode is not supported in 64-bit mode. Task management and switching must be
performed by software. The processor issues a general-protection exception (#GP) if the following is attempted in
64-bit mode:

® Control transfer to a TSS or a task gate using JMP, CALL, INT n, INT3, INTO, INT1, or interrupt.
® An IRET with EFLAGS.NT (nested task) set to 1.

7-16 Vol. 3A

TASK MANAGEMENT

Although hardware task-switching is not supported in 64-bit mode, a 64-bit task state segment (TSS) must exist.
Figure 7-11 shows the format of a 64-bit TSS. The TSS holds information important to 64-bit mode and that is not
directly related to the task-switch mechanism. This information includes:

® RSPn — The full 64-bit canonical forms of the stack pointers (RSP) for privilege levels 0-2.
® ISTn — The full 64-bit canonical forms of the interrupt stack table (IST) pointers.
® 1/0 map base address — The 16-bit offset to the I/O permission bit map from the 64-bit TSS base.

The operating system must create at least one 64-bit TSS after activating IA-32e mode. It must execute the LTR
instruction (in 64-bit mode) to load the TR register with a pointer to the 64-bit TSS responsible for both 64-bit-
mode programs and compatibility-mode programs.

31 15 0

I/O Map Base Address Reserved 100
Reserved 96
Reserved 92
IST7 (upper 32 bits) 88
IST7 (lower 32 bits) 84
IST6 (upper 32 bits) 80
IST6 (lower 32 bits) 76
IST5 (upper 32 bits) 72
IST5 (lower 32 bits) 68
IST4 (upper 32 bits) 64
IST4 (lower 32 bits) 60
IST3 (upper 32 bits) 56
IST3 (lower 32 bits) 52
IST2 (upper 32 bits) 48
IST2 (lower 32 bits) 44
IST1 (upper 32 bits) 40
IST1 (lower 32 bits) 36
Reserved 32
Reserved 28
RSP2 (upper 32 bits) 24
RSP2 (lower 32 bits) 20
RSP1 (upper 32 bits) 16
RSP1 (lower 32 bits) 12
RSPO (upper 32 bits) 8
RSPO (lower 32 bits)
Reserved

E Reserved bits. Set to 0.

Figure 7-11. 64-Bit TSS Format

Vol.3A 7-17

TASK MANAGEMENT

7-18 Vol. 3A

11.Updates to Chapter 17, Volume 3B

Change bars show changes to Chapter 17 of the Intel® 64 and I1A-32 Architectures Software Developer’'s Manual,
Volume 3B: System Programming Guide, Part 2.

Changes to this chapter: Updates to Section 17.1 “"Overview of Debug Support Facilities”, Section 17.2.5 “Break-
point Field Recognition”, Section 17.3.1 “Debug Exception (#DB)—Interrupt Vector 1”, Section 17.3.1.1 “Instruc-
tion-Breakpoint Exception Condition”, Section 17.3.1.2 "Data Memory and I/O Breakpoint Exception Conditions”,
Section 17.3.1.4 “Single-Step Exception Condition”, and Section 17.3.2 “Breakpoint Exception (#BP)—Interrupt
Vector 3”.

Intel® 64 and IA-32 Architectures Software Developer’s Manual Documentation Changes 27

CHAPTER 17
DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR
TECHNOLOGY (INTEL® RDT) FEATURES

Intel 64 and IA-32 architectures provide debug facilities for use in debugging code and monitoring performance.
These facilities are valuable for debugging application software, system software, and multitasking operating
systems. Debug support is accessed using debug registers (DRO through DR7) and model-specific registers
(MSRs):

Debug registers hold the addresses of memory and I/0 locations called breakpoints. Breakpoints are user-
selected locations in a program, a data-storage area in memory, or specific I/O ports. They are set where a
programmer or system designer wishes to halt execution of a program and examine the state of the processor
by invoking debugger software. A debug exception (#DB) is generated when a memory or I/O access is made
to a breakpoint address.

MSRs monitor branches, interrupts, and exceptions; they record addresses of the last branch, interrupt or
exception taken and the last branch taken before an interrupt or exception.

Time stamp counter is described in Section 17.17, “Time-Stamp Counter”.

Features which allow monitoring of shared platform resources such as the L3 cache are described in Section
17.18, “Intel® Resource Director Technology (Intel® RDT) Monitoring Features”.

Features which enable control over shared platform resources are described in Section 17.19, “"Intel® Resource
Director Technology (Intel® RDT) Allocation Features”.

17.1 OVERVIEW OF DEBUG SUPPORT FACILITIES

The following processor facilities support debugging and performance monitoring:

Debug exception (#DB) — Transfers program control to a debug procedure or task when a debug event
occurs.

Breakpoint exception (#BP) — See breakpoint instruction (INT3) below.
Breakpoint-address registers (DRO through DR3) — Specifies the addresses of up to 4 breakpoints.

Debug status register (DR6) — Reports the conditions that were in effect when a debug or breakpoint
exception was generated.

Debug control register (DR7) — Specifies the forms of memory or I/O access that cause breakpoints to be
generated.

T (trap) flag, TSS — Generates a debug exception (#DB) when an attempt is made to switch to a task with
the T flag set in its TSS.

RF (resume) flag, EFLAGS register — Suppresses multiple exceptions to the same instruction.

TF (trap) flag, EFLAGS register — Generates a debug exception (#DB) after every execution of an
instruction.

Breakpoint instruction (INT3) — Generates a breakpoint exception (#BP) that transfers program control to
the debugger procedure or task. This instruction is an alternative way to set instruction breakpoints. It is
especially useful when more than four breakpoints are desired, or when breakpoints are being placed in the
source code.

Last branch recording facilities — Store branch records in the last branch record (LBR) stack MSRs for the
most recent taken branches, interrupts, and/or exceptions in MSRs. A branch record consist of a branch-from
and a branch-to instruction address. Send branch records out on the system bus as branch trace messages
(BTMs).

These facilities allow a debugger to be called as a separate task or as a procedure in the context of the current
program or task. The following conditions can be used to invoke the debugger:

Task switch to a specific task.

Vol.3B 17-1

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

® Execution of the breakpoint instruction.

® Execution of any instruction.

® Execution of an instruction at a specified address.

® Read or write to a specified memory address/range.
®* Write to a specified memory address/range.

* Input from a specified I/O address/range.

® OQutput to a specified I/O address/range.

®* Attempt to change the contents of a debug register.

17.2 DEBUG REGISTERS

Eight debug registers (see Figure 17-1 for 32-bit operation and Figure 17-2 for 64-bit operation) control the debug
operation of the processor. These registers can be written to and read using the move to/from debug register form
of the MOV instruction. A debug register may be the source or destination operand for one of these instructions.

31302928 272625242322212019181716151413 121110 9 8 7 6 54 3 2 1 0
LENR/WLENR/WLENRIWLENR/WOOG0$1GLGLGLGLGL DR7

3 3 2 2 1 1 0 0 D M E|E|3|3|2|2(1]|1]|0|0

31 161514131211109 8 7 6 54 3 2 1 0

R

Reserved (set to 1) T|B|B|Bj0o11 111 111|BBBB|prg

M T|S|D 3|2(1|0

31 0
DR5

31 0
DR4

31 0
Breakpoint 3 Linear Address DR3

31 0
Breakpoint 2 Linear Address DR2

31 0
Breakpoint 1 Linear Address DR1

31 0
Breakpoint 0 Linear Address DRO

I:l Reserved

Figure 17-1. Debug Registers

17-2 Vol.3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Debug registers are privileged resources; a MOV instruction that accesses these registers can only be executed in
real-address mode, in SMM or in protected mode at a CPL of 0. An attempt to read or write the debug registers
from any other privilege level generates a general-protection exception (#GP).

The primary function of the debug registers is to set up and monitor from 1 to 4 breakpoints, numbered 0 though
3. For each breakpoint, the following information can be specified:

® The linear address where the breakpoint is to occur.

®* The length of the breakpoint location: 1, 2, 4, or 8 bytes (refer to the notes in Section 17.2.4).
® The operation that must be performed at the address for a debug exception to be generated.

® Whether the breakpoint is enabled.

®* Whether the breakpoint condition was present when the debug exception was generated.

The following paragraphs describe the functions of flags and fields in the debug registers.

17.2.1 Debug Address Registers (DRO-DR3)

Each of the debug-address registers (DRO through DR3) holds the 32-bit linear address of a breakpoint (see
Figure 17-1). Breakpoint comparisons are made before physical address translation occurs. The contents of debug
register DR7 further specifies breakpoint conditions.

17.2.2 Debug Registers DR4 and DR5

Debug registers DR4 and DR5 are reserved when debug extensions are enabled (when the DE flag in control
register CR4 is set) and attempts to reference the DR4 and DRS5 registers cause invalid-opcode exceptions (#UD).
When debug extensions are not enabled (when the DE flag is clear), these registers are aliased to debug registers
DR6 and DR7.

17.2.3 Debug Status Register (DR6)

The debug status register (DR6) reports debug conditions that were sampled at the time the last debug exception
was generated (see Figure 17-1). Updates to this register only occur when an exception is generated. The flags in
this register show the following information:

®* BO through B3 (breakpoint condition detected) flags (bits O through 3) — Indicates (when set) that its
associated breakpoint condition was met when a debug exception was generated. These flags are set if the
condition described for each breakpoint by the LENn, and R/Wn flags in debug control register DR7 is true. They
may or may not be set if the breakpoint is not enabled by the Ln or the Gn flags in register DR7. Therefore on
a #DB, a debug handler should check only those B0-B3 bits which correspond to an enabled breakpoint.

®* BD (debug register access detected) flag (bit 13) — Indicates that the next instruction in the instruction
stream accesses one of the debug registers (DRO through DR7). This flag is enabled when the GD (general
detect) flag in debug control register DR7 is set. See Section 17.2.4, “"Debug Control Register (DR7),” for
further explanation of the purpose of this flag.

®* BS (single step) flag (bit 14) — Indicates (when set) that the debug exception was triggered by the single-
step execution mode (enabled with the TF flag in the EFLAGS register). The single-step mode is the highest-
priority debug exception. When the BS flag is set, any of the other debug status bits also may be set.

®* BT (task switch) flag (bit 15) — Indicates (when set) that the debug exception resulted from a task switch
where the T flag (debug trap flag) in the TSS of the target task was set. See Section 7.2.1, “Task-State
Segment (TSS),” for the format of a TSS. There is no flag in debug control register DR7 to enable or disable this
exception; the T flag of the TSS is the only enabling flag.

®* RTM (restricted transactional memory) flag (bit 16) — Indicates (when clear) that a debug exception
(#DB) or breakpoint exception (#BP) occurred inside an RTM region while advanced debugging of RTM trans-
actional regions was enabled (see Section 17.3.3). This bit is set for any other debug exception (including all
those that occur when advanced debugging of RTM transactional regions is not enabled). This bit is always 1 if
the processor does not support RTM.

Vol.3B 17-3

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Certain debug exceptions may clear bits 0-3. The remaining contents of the DR6 register are never cleared by the
processor. To avoid confusion in identifying debug exceptions, debug handlers should clear the register (except
bit 16, which they should set) before returning to the interrupted task.

17.2.4 Debug Control Register (DR7)

The debug control register (DR7) enables or disables breakpoints and sets breakpoint conditions (see Figure 17-1).
The flags and fields in this register control the following things:

LO through L3 (local breakpoint enable) flags (bits O, 2, 4, and 6) — Enables (when set) the breakpoint
condition for the associated breakpoint for the current task. When a breakpoint condition is detected and its
associated Ln flag is set, a debug exception is generated. The processor automatically clears these flags on
every task switch to avoid unwanted breakpoint conditions in the new task.

GO through G3 (global breakpoint enable) flags (bits 1, 3, 5, and 7) — Enables (when set) the
breakpoint condition for the associated breakpoint for all tasks. When a breakpoint condition is detected and its
associated Gn flag is set, a debug exception is generated. The processor does not clear these flags on a task
switch, allowing a breakpoint to be enabled for all tasks.

LE and GE (local and global exact breakpoint enable) flags (bits 8, 9) — This feature is not supported in
the P6 family processors, later IA-32 processors, and Intel 64 processors. When set, these flags cause the
processor to detect the exact instruction that caused a data breakpoint condition. For backward and forward
compatibility with other Intel processors, we recommend that the LE and GE flags be set to 1 if exact
breakpoints are required.

RTM (restricted transactional memory) flag (bit 11) — Enables (when set) advanced debugging of RTM
transactional regions (see Section 17.3.3). This advanced debugging is enabled only if IA32_ DEBUGCTL.RTM is
also set.

GD (general detect enable) flag (bit 13) — Enables (when set) debug-register protection, which causes a
debug exception to be generated prior to any MOV instruction that accesses a debug register. When such a
condition is detected, the BD flag in debug status register DR6 is set prior to generating the exception. This
condition is provided to support in-circuit emulators.

When the emulator needs to access the debug registers, emulator software can set the GD flag to prevent
interference from the program currently executing on the processor.

The processor clears the GD flag upon entering to the debug exception handler, to allow the handler access to
the debug registers.

R/WO through R/W3 (read/write) fields (bits 16, 17, 20, 21, 24, 25, 28, and 29) — Specifies the
breakpoint condition for the corresponding breakpoint. The DE (debug extensions) flag in control register CR4
determines how the bits in the R/Wn fields are interpreted. When the DE flag is set, the processor interprets
bits as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Break on I/O reads or writes.

11 — Break on data reads or writes but not instruction fetches.

When the DE flag is clear, the processor interprets the R/Wn bits the same as for the Intel386™ and Intel486™
processors, which is as follows:

00 — Break on instruction execution only.

01 — Break on data writes only.

10 — Undefined.

11 — Break on data reads or writes but not instruction fetches.

LENO through LEN3 (Length) fields (bits 18, 19, 22, 23, 26, 27, 30, and 31) — Specify the size of the
memory location at the address specified in the corresponding breakpoint address register (DRO through DR3).
These fields are interpreted as follows:

00 — 1-byte length.
01 — 2-byte length.
10 — Undefined (or 8 byte length, see note below).
11 — 4-byte length.

17-4 Vol.3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

If the corresponding RWn field in register DR7 is 00 (instruction execution), then the LENN field should also be 00.
The effect of using other lengths is undefined. See Section 17.2.5, “"Breakpoint Field Recognition,” below.

NOTES

For Pentium® 4 and Intel® Xeon® processors with a CPUID signature corresponding to family 15
(model 3, 4, and 6), break point conditions permit specifying 8-byte length on data read/write with
an of encoding 10B in the LENN field.

Encoding 10B is also supported in processors based on Intel Core microarchitecture or enhanced
Intel Core microarchitecture, the respective CPUID signatures corresponding to family 6, model 15,
and family 6, DisplayModel value 23 (see CPUID instruction in Chapter 3, “Instruction Set
Reference, A-L” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume
2A). The Encoding 10B is supported in processors based on Intel® Atom™ microarchitecture, with
CPUID signature of family 6, DisplayModel value 1CH. The encoding 10B is undefined for other
processors.

17.2.5 Breakpoint Field Recognition

Breakpoint address registers (debug registers DRO through DR3) and the LENnN fields for each breakpoint define a
range of sequential byte addresses for a data or I/O breakpoint. The LENn fields permit specification of a 1-, 2-, 4-
or 8-byte range, beginning at the linear address specified in the corresponding debug register (DRn). Two-byte
ranges must be aligned on word boundaries; 4-byte ranges must be aligned on doubleword boundaries, 8-byte
ranges must be aligned on quadword boundaries. I/O addresses are zero-extended (from 16 to 32 bits, for
comparison with the breakpoint address in the selected debug register). These requirements are enforced by the
processor; it uses LENnN field bits to mask the lower address bits in the debug registers. Unaligned data or I/O
breakpoint addresses do not yield valid results.

A data breakpoint for reading or writing data is triggered if any of the bytes participating in an access is within the
range defined by a breakpoint address register and its LENn field. Table 17-1 provides an example setup of debug
registers and data accesses that would subsequently trap or not trap on the breakpoints.

A data breakpoint for an unaligned operand can be constructed using two breakpoints, where each breakpoint is
byte-aligned and the two breakpoints together cover the operand. The breakpoints generate exceptions only for
the operand, not for neighboring bytes.

Instruction breakpoint addresses must have a length specification of 1 byte (the LENN field is set to 00). Instruction
breakpoints for other operand sizes are undefined. The processor recognizes an instruction breakpoint address
only when it points to the first byte of an instruction. If the instruction has prefixes, the breakpoint address must
point to the first prefix.

Vol.3B 17-5

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

Table 17-1. Breakpoint Examples

Debug Register Setup

Debug Register R/Wn Breakpoint Address LENN

DRO R/WO =11 (Read/Write) AOOO1H LENO =00 (1 byte)
DR1 R/W1 =01 (Write) AO002H LENT =00 (1 byte)
DR2 R/W2 =11 (Read/Write) BOOO2H LEN2 = 01) (2 bytes)
DR3 R/W3 =01 (Write) COO00CH LEN3 =11 (4 bytes)

Data Accesses

Operation

Address

Access Length
(In Bytes)

Data operations that trap

- Read or write AOOO1TH 1
- Read or write AOOO1TH 2
- Write AOO0O2H 1
- Write AOO0O02H 2
- Read or write BOOO1TH 4
- Read or write BOOO2H 1
- Read or write BOOOz2H 2
- Write CO000H 4
- Write CO001TH 2
- Write CO003H 1
Data operations that do not trap

- Read or write AOOOCH 1
- Read AO0O02H 1
- Read or write AOOO3H 4
- Read or write BOOOOH 2
- Read COO000H 2
- Read or write C0004H 4

17.2.6 Debug Registers and Intel® 64 Processors

For Intel 64 architecture processors, debug registers DRO-DR7 are 64 bits. In 16-bit or 32-bit modes (protected
mode and compatibility mode), writes to a debug register fill the upper 32 bits with zeros. Reads from a debug
register return the lower 32 bits. In 64-bit mode, MOV DRn instructions read or write all 64 bits. Operand-size
prefixes are ignored.

In 64-bit mode, the upper 32 bits of DR6 and DR7 are reserved and must be written with zeros. Writing 1 to any of
the upper 32 bits results in a #GP(0) exception (see Figure 17-2). All 64 bits of DRO-DR3 are writable by software.
However, MOV DRn instructions do not check that addresses written to DRO-DR3 are in the linear-address limits of
the processor implementation (address matching is supported only on valid addresses generated by the processor

implementation). Break point conditions for 8-byte memory read/writes are supported in all modes.

173 DEBUG EXCEPTIONS

The Intel 64 and IA-32 architectures dedicate two interrupt vectors to handling debug exceptions: vector 1 (debug
exception, #DB) and vector 3 (breakpoint exception, #BP). The following sections describe how these exceptions

are generated and typical exception handler operations.

17-6 Vol. 3B

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

63 32
DR7

3130 29 28 27 26 25 24 23 2221201918 1716151413 1211109 8 7 6 5 4 3 2 1 0
LEN|R/W|LEN|R/W|LEN|R/W|LEN|R/W[0 0|G|0 0 1|G|L|G|L|G|L|G|L|G|L DR7

3 3 2 2 1 1 0 0 D E|E|3|3]|2|2|1|1]|0|0

63 32
DR6

31 161514131211109 8 7 6 54 3 2 1 0
Reserved (set to 1) B/B[B|[0111111111|B/B|BB DR6

T|S|D 3|2|1|0

63 0
DR5

63 0
DR4

63 0
Breakpoint 3 Linear Address DR3

63 0
Breakpoint 2 Linear Address DR2

63 0
Breakpoint 1 Linear Address DR1

63 0
Breakpoint 0 Linear Address DRO

\:’ Reserved

Figure 17-2. DR6/DR7 Layout on Processors Supporting Intel® 64 Architecture

17.3.1 Debug Exception (#DB)—Interrupt Vector 1

The debug-exception handler is usually a debugger program or part of a larger software system. The processor
generates a debug exception for any of several conditions. The debugger checks flags in the DR6 and DR7 registers
to determine which condition caused the exception and which other conditions might apply. Table 17-2 shows the
states of these flags following the generation of each kind of breakpoint condition.

Instruction-breakpoint and general-detect condition (see Section 17.3.1.3, “"General-Detect Exception Condition”)
result in faults; other debug-exception conditions result in traps. The debug exception may report one or both at
one time. The following sections describe each class of debug exception.

Vol.3B 17-7

DEBUG, BRANCH PROFILE, TSC, AND INTEL® RESOURCE DIRECTOR TECHNOLOGY (INTEL® RDT) FEATURES

The INT1 instruction generates a debug exception as a trap. Hardware vendors may use the INT1 instruction for
hardware debug. For that reason, Intel recommends software vendors instead use the INT3 instruction for software

breakpoints.

See also: Chapter 6, “Interrupt 1—Debug Exception (#DB),” in the Intel® 64 and 1A-32 Architectures Software

Developer’s Manual, Volume 3A.

Table 17-2. Debug Exception Conditions

Debug or Breakpoint Condition DR6 Flags Tested DR7 Flags Tested Exception Class

Single-step trap BS=1 Trap

Instruction breakpoint, at addresses defined by DRnand | Bn=1 and R/Wn =0 Fault

LENn (Gnorln=1)

Data write breakpoint, at addresses defined by DRn and Bn=1and R/Wn =1 Trap

LENN (GnorLn=1)

I/0 read or write breakpoint, at addresses defined by DRn | Bn=1 and R/Wn =2 Trap

and LENn (GnorLn=1)

Data read or write (but not instruction fetches), at Bn=1and R/Wn =3 Trap

addresses defined by DRn and LENn (Gnorln=1)

General detect fault, resulting from an attempt to modify | BD =1 None Fault

debug registers (usually in conjunction with in-circuit

emulation)

Task switch BT =1 None Trap

INT1 instruction None None Trap
17.3.1.1 Instruction-Breakpoint Exception Condition

The processor reports an instruction breakpoint when it attempts to execute an instruction at an address specified
in a breakpoint-address register (DRO through DR3) that has been set up to detect instruction execution (R/W flag
is set to 0). Upon reporting the instruction breakpoint, the processor generates a fault-class, debug exception
(#DB) before it executes the target instruction for the breakpoint.

Instruction breakpoints are the highest priority debug exceptions. They are serviced before any other exceptions
detected during the decoding or execution of an instruction. However, if an instruction breakpoint is placed on an
instruction located immediately after a POP SS/MOV SS instruction, the breakpoint will be suppressed as if
EFLAGS.RF were 1 (see the next paragraph and Section 6.8.3, “"Masking Exceptions and Interrupts When
Switching Stacks,” of the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A).

Because the debug exception for an instruction breakpoint is generated before the instruction is executed, if the
instruction breakpoint is not removed by the exception handler; the processor will detect the instruction breakpoint
again when the instruction is restarted and generate another debug exception. To prevent looping on an instruction
breakpoint, the Intel 64 and IA-32 architectures provide the RF flag (resume flag) in the EFLAGS register (see
Section 2.3, “"System Flags and Fields in the EFLA