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Executive Summary 
This paper presents a fast and efficient method of computing CRC on IA 

processors with generic  polynomials using the carry-less multiplication 

instruction – PCLMULQDQ. 

Instead of reducing the entire message with traditional reduction 

algorithms, we use a faster folding approach to reduce an arbitrary length 

buffer to a small fixed size to be reduced further by traditional methods 

such as Barrett reduction. 

Parallelized folding approach is used to maximize the throughput of 

PCLMULQDQ instructions. We show how to do this efficiently for data 

buffers of arbitrary length. 

The final reduction part is only slightly different for different sized 

polynomials (e.g., a 32-bit CRC and a 16-bit CRC). 

 With our novel folding methods, CRC computation using PCLMULQDQ 

is faster than best software routines that don’t use the instruction, on 

a range of IA processor cores. 

This paper will enable customers to code and optimize any CRC 

application for maximum performance on Westmere. We use real 

examples in the paper to illustrate the methods. 
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Background 

A Cyclic Redundancy Check (CRC) is the remainder, or residue, of binary 
division of a potentially long message, by a CRC polynomial.  This technique 

is ubiquitously employed in communication and storage applications due to 
its effectiveness at detecting errors and malicious tampering. It is a simple 
operation; one merely applies the CRC to calculate the residue of the data 
one wishes to protect and appends it to the end of the data stream. When 
the transmission is received or the stored data is retrieved, the CRC residue 
is re-generated and confirmed against the appended residue. 

With the explosion of high-speed networking and the dramatic increase in 
storage demands over the past decade, CRC residue generation has become 
a significantly harder problem. Data networks transmitting 10 
Gigabits/second of data are commonplace, with even faster networks on the 
horizon. Designers in the networking and storage space are challenged to 
support many different CRC polynomials due to the multiplicity of 

mainstream transmission protocols. Due to the conflicting demands of 
increased speed and polynomial flexibility, it is highly desirable to have a 
system that can satisfy both of these requirements simultaneously.   

Overview of CRC computation  

We can define the CRC value of a message M of any length, corresponding to 
the binary polynomial M (x) as: 

CRC (M (x)) = xdeg(P(x)) • M(x) mod P (x)   

where the polynomial P(x) defines the CRC algorithm and the symbol “•” 
denotes carry-less multiplication. 

For a 32 bit CRC algorithm, P(x) is a polynomial of degree 32.  



Fast CRC Computation Using PCLMULQDQ Instruction 

 
 

6    

Figure 1.  32-bit CRC Operation  

Arbitrary length Data

CRC Value

CRC
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CRC can be computed as the modular residue of a large polynomial defined 
over the Galois field GF(2) with respect to the CRC polynomial. An example 
illustrating this fact for a 32-bit CRC is shown in Figure 1. Modular reduction 

over binary fields can be performed efficiently using Barrett/Montgomery 
style reductions if we can perform efficient carry-less multiplication. If there 
is no efficient carry-less multiplication, the traditional methods use multiple 
lookup tables to compute the CRC – these methods are not as fast as our 
methods using carry-less multiplication and suffer from the need to store 
large lookup tables per polynomial. 

In the following discussions, we focus on 32-bit CRC to illustrate the main 
points; however, these points apply to polynomials of other sizes as well. A 
straightforward implementation of 32-bit CRC operation using carry-less 
multiplication, requires reducing 64 bits of data down to 32-bits at each 
iteration using the traditional GF(2) reduction methods. This reduction is 

expensive, because it needs two dependent carry-less multiplication 
operations for each iteration and reduces 32 bits of the data. Alternatively, 
the data can be repeatedly folded down by 128 bits at a time, taking 
advantage of the PCLMULQDQ carry-less multiplication instruction. Using 
this approach, the reduction to 32-bits will be necessary only at the end 
yielding a faster reduction scheme. 
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PCLMULQDQ Instruction 

PCLMULQDQ instruction performs carry-less multiplication of two 64-bit 
quadwords which are selected from the first and the second operands 
according to the immediate byte value. 

 

Instruction format: PCLMULQDQ xmm1, xmm2/m128, imm8 
 
Description: Carry-less multiplication of one quadword (8-byte) of xmm1 
by one quadword (8-byte) of xmm2/m128, returning double quadwords (16 
bytes). The immediate byte is used for determining which quadwords of 
xmm1 and xmm2/m128 should be used. Due to the nature of carry-less 

multiplication, the most-significant bit of the result will be 0. 
 
Opcode: 66 0f 3a 44 
The presence of PCLMULQDQ is indicated by the CPUID leaf 1 ECX[1]. 
Operating systems that support the handling of Intel SSE state will also 
support applications that use AES extensions and the PCLMULQDQ 

instruction. This is the same requirement for Intel SSE2, Intel SSE3, Intel 
SSSE3, and Intel SSE4. 

The immediate byte values are used as follows: 

imm[7:0] Operation 

0x00 xmm2/m128[63:0] • xmm1[63:0] 

0x01 xmm2/m128[63:0] • xmm1[127:64] 

0x10 xmm2/m128[127:64] • xmm1[63:0] 

0x11 xmm2/m128[127:64] • xmm1[127:64] 

 

Fast CRC Computation 

Overview of the Folding Method 

For any application that requires CRC one can pre-compute a few constants 
(that are a function of the polynomial) and then repeatedly apply these 
constants to fold the most-significant chunks of the data buffer, at each 

stage creating a new buffer that is smaller in length but congruent (modulo 
the polynomial) to the original one, as illustrated in Figure 2. 



Fast CRC Computation Using PCLMULQDQ Instruction 

 
 

8    

Figure 2. General Description of Folding a Data Buffer 

XORsMultiplicationsConstants

  

In Figure 2, we show folding in its simplest form, where a most-significant 

chunk of data is folded into an adjacent chunk of the same size reducing the 
data buffer to one that is smaller in length by the length of the chunk. 

In Figure 3, we show a more generalized approach to folding where we fold 
the most-significant chunk to an arbitrary position in the data buffer. More 
specifically, let D(x) and G(x) be the most significant 128-bit and remaining 

T-bit (T >= 128) chunks respectively of a data buffer M(x). In order to fold 
128 bits of data, we could compute D(x) • [xT mod P(x)] and XOR (bit-wise 
exclusive or) it with G(x). This follows from the fact that: 

M(x) = D(x) • xT  G(x) 

M(x) mod P(x)  {D(x) • [xT mod P(x)]   G(x)} mod P(x) 

We can precompute [xT mod P(x)], which would be a 32-bit constant for 
32-bit CRC. The product D(x) • [xT mod P(x)] would yield a (128+32) 
160-bit result which cannot be handled efficiently in a typical SSE2 
architecture.  

Therefore, we treat D(x) as two 64-bit chunks: H(x) and L(x). Then the 
following computation will result in a reduced 96-bit data chunk that is 
congruent to D(x) • xT modulo P(x): 

D(x) • [xT mod P(x)]  {H(x) • [x(T+64) mod P(x)]}  {L(x) • [xT mod 

P(x)]} 
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Finally XOR of this result with G(x) will effectively compute a folded version 

of the data buffer that is 128 bits shorter in length than the original buffer 
M(x), but congruent modulo the polynomial. Note that we need to 
precompute two 32-bit constants [x(T+64) mod P(x)] and [xT mod P(x)]. 

M(x) mod P(x)  {H(x) • [x(T+64) mod P(x)]}  {L(x) • [xT mod P(x)]}  

 G(x) mod P(x) 

For convenience we use a 128-bit chunk as the smallest chunk to be folded 
(though this actually requires a pair of carry-less multiplications) since it 
permits efficient operations with the 128-bit XMM registers. We should note 
that this analysis extends naturally to a larger data buffer M(x), and T can 
be a smaller distance not required to be defined as the entire remaining bits 

of M(x), but any portion thereof. For efficient implementations, T is chosen 
as close to the most-significant chunk as possible. 

 

Figure 3: Folding a 128-bit Data Chunk across T-bits 

G(x)L(x)H(x)

T

T+64

128

multiply with K1 = x
(T+64)

 mod P(x)

multiply with K2 = x
T
 mod P(x)

64 64




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Single fold of a 128-bit Data chunk 

Given a data buffer whose length >= 2*128 bits, we can reduce it by 128 
bits iteratively. In this case, we simply work with two adjacent 128-bit 
blocks, setting T = 128. The constants are K1 = [x(128+64) mod P(x)] and 
K2 = [x128 mod P(x)]. 

Figure 4. Pseudo-code for Single Folding (T = 128) 

Fold_by_1_loop:    ; for(i=rax-1; i>0 ; i--) {  

movdqa xmm2, xmm1     ; xmm2 = xmm1;  

add rcx, 16       ; buf += 16; 

movdqa xmm0, [rcx]    ; xmm0 = buf; 

pshufb xmm0, [SHUF_MASK]  ; endianness swap if required 

pclmulqdq xmm1,  xmm3, 0x00 ; xmm1  = clmul(xmm1 , K2); 

pclmulqdq xmm2,  xmm3, 0x11 ; xmm2  = clmul(xmm2 , K1);  

pxor xmm0, xmm1     ; xmm0 = xmm0  xmm1; 

pxor xmm0, xmm2     ; xmm0 = xmm0  xmm2; 

movdqa xmm1, xmm0     ; xmm1 = xmm0; 

sub rax, 1 

jne Fold_by_1_loop    ; } 

 

SHUF_MASK : DDQ 000102030405060708090A0B0C0D0E0Fh 

xmm3     : K1|K2 

The folding operation allows efficient utilization of the PCLMULQDQ 
instruction, which computes the carry-less multiplication of two 64-bit 
operands. The constants K1 and K2 for the desired amount of folding are pre-
computed. Each folding requires 2 PCLMULQDQ operations and 2 PXOR 
operations as illustrated in the pseudo-code in Figure 4. The pshufb 
operation is done on the data to conditionally swap bytes to ensure that the 

XMM register will hold consecutive bits representing powers [x127…x0] in the 
case of normal bit-ordering within the data byte. In the case when the data 
bits are reversed within a byte, the byte-swapping may be required to get 
the XMM register to represent consecutive powers [x0…x127]. 
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Parallel Folding of 128-bit Data chunks 

In order to further maximize the efficiency of folding, it can be applied on 
different chunks of the data in a parallel manner as shown in Figure 5. 

Figure 5: Folding 4 128-bit Data Chunks in parallel 

X3 X2 X1 X0

XOR

XOR

XOR

XOR

fold fold fold fold

 

Thus for buffers that are suitably large (length >= 2*(4*128) bits), we can 
iteratively reduce by 4 folding operations for maximal efficiency, until we 
have a congruent buffer that is much smaller. 

Each of the 4 folds is identical – we work on 128-bit data chunks using the 
constants K1 = [x(512+64) mod P(x)] and K2 = [x512 mod P(x)]. This 

corresponds to T = 4*128 = 512. 

 

Detailed Implementation Steps for 32-bit CRC 

In this section, we describe the steps required to reduce an arbitrary data 
buffer to the final CRC, using parallel, single folds and traditional reduction 
methods to generate the final CRC. For ease of illustration, we assume the 
data buffer is large enough that it will require all the steps in this section 
and we assume a 32-bit CRC. We denote the constants in the various steps 
as ki. 

Step 1 – Iteratively Fold by 4: 

The parallel folding by 4 operations on an arbitrary length buffer is 
illustrated in Figure 6. 
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Figure 6: Overall folding-by-4 operation 
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Thus for buffers that are suitably large (length >= 2*(4*128) bits), we 
iteratively reduce by 4 folding operations, until we have a congruent buffer 

that is much smaller. This step requires 2 precomputed constants k1 = 
[x(512+64) mod P(x)] and k2 = [x512 mod P(x)].  

This step completes with at least four (for a suitably large initial data buffer) 
and at most eight 128-bit data chunks. We then fold this buffer iteratively 
into a single 128-bit chunk using appropriate constants in the next step. 

Step 2 – Iteratively Fold by 1: 

Since this step is done only once towards the end of the CRC computation, 
one does not need to compute the folding of these remaining chunks in 
parallel. In the worst case there will be seven full 128-bit data chunks and 

one partially full 128-bit data chunk. The overall folding by 1 operation on 
the remaining buffer is illustrated in Figure 7. 
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Figure 7: Overall folding-by-1 operation  
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While the length of the buffer is >= 2*128 bits, we iteratively reduce it by 1 
fold, until we have a congruent buffer that is much smaller. This step 
requires 2 precomputed constants k3 = [x(128+64) mod P(x)] and k4 = [x128 
mod P(x)].  

This step completes with at least one (for a suitably large initial data buffer) 
and at most two 128-bit data chunks. If we have two chunks, then there is 
one partial data chunk – we pad the data with (most-significant) zeros to 
256 bits and then apply another single fold to generate a 128-bit buffer. 

Step 3 - Final Reduction of 128-bits 

Finally the 32-bit CRC value is computed from the remaining 128-bit data as 
shown in Figure 8. Note that k5 and k6 are 32-bit values defined as k5 = [x96 
mod P(x)] and k6 = [x64 mod P(x)]. Hence multiplication with k5 reduces 
the 128-bit data into 96 bits, and multiplication with k6 reduces the 96-bit 
data into 64 bits. The remaining 64-bit data is reduced into the 32-bit CRC 

value using a traditional GF(2) Polynomial Barrett reduction. 
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Figure 8:  Final Reduction from 128-bits to 32-bit CRC 
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The Barrett Reduction Algorithm is shown in Algorithm 1.  

Algorithm 1. Barrett Reduction Algorithm for a degree-32 polynomial modulus 
(polynomials defined over GF(2)) 

Input: degree-63 polynomial R(x), degree-32 polynomial P(x), µ = (x64 / 

P(x)) 

Output: C(x) = R(x) mod P(x) 

Step 1: T1(x) =  (R(x)/x32)  • µ  

Step 2: T2(x) =  (T1(x)/x32)  • P(x)  

Step 3: C(x) = R(x)  T2(x) mod x32 

After step 3, the 32 high-order coefficients of C will be 0.  

Overall flow 

The flowchart of the overall CRC operation is shown in Figure 9. 
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 Figure 9. Flowchart of the CRC operation 
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Example of 32-bit CRC (IEEE 802.3) 

These methods can be applied as an example to the IEEE 802.3 CRC. These 
are the key constants that need to be computed for this example. For other 
32-bit CRC applications, the constants need to be recomputed using the 
formulae given in the previous sections. 

• P(x) = 0x104C11DB7; 

•  k1 = x4*128+64 mod P(x) =  0x8833794C 

•  k2 = x4*128  mod P(x)  =  0xE6228B11 

•  k3 = x128+64  mod P(x) =  0xC5B9CD4C 

•  k4 = x128  mod P(x)  =  0xE8A45605 

•  k5 = x96   mod P(x) =  0xF200AA66 

•  k6 = x64   mod P(x) =  0x490D678D 

•   = x64/P(x)    =  0x104D101DF 

 

16-bit CRC 

If the CRC is required for a polynomial of degree smaller than 32, say 16, 
the same methods described above, will work if we use a modulus scaling 
approach. We use the property: 

 A  B mod C  A•K  B•K mod C•K 

This means that, if we multiply the modulus (C) and the number to be 
reduced (A) with the same constant, then the intermediate result of the 
modular operation using these modified values will be (B•K) – this 
intermediate result can be divided with the same constant to achieve B, 
which is the desired result.  

If our polynomial P(x) is of degree 16, we multiply it with x16 and achieve a 
32-degree polynomial Q(x). In a 32-bit CRC operation, the data buffer to be 
reduced is multiplied with x32. For the 16-bit CRC, instead of multiplying the 
data buffer with x16, we multiply it with x32 to achieve the same scaling as 
modulus polynomial. Now that both modulus and operand are scaled with 

the same constant, x16, we can proceed with the 32-bit CRC algorithm 
described above. The constants are also pre-computed using the scaled 
modulus polynomial Q(x). At the very end of the CRC operation, the most 
significant 16 bits of the final CRC value are returned (the lower 16 bits are 
zero). 
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For 16-bit CRC we should note that the suggested method is also optimal in 

addition to being convenient - we cannot take advantage of the smaller size 
of the CRC polynomial and find a faster implementation since the carry-less 
multiplication instruction is defined on a fixed operand size of 64 bits. 

 

64-bit CRC 

If we have applications that require a CRC with a polynomial degree greater 
than 32, we can use similar techniques described in the previous sections to 
compute a 64 bit CRC. 

The process of folding is exactly the same (with different constants) with 
minor differences in the final reduction flow. 

Final Reduction of 128-bits 

In the 3rd Step, the 64-bit CRC value is computed from the remaining 128-
bit data as shown in Figure 10. Note that k5 is a 64-bit value defined as k5 = 
[x128 mod P(x)]. The remaining 128-bit data is reduced into the 64-bit CRC 
value using a traditional GF(2) Polynomial Barrett reduction 

Figure 10. Final reduction from 128 bits to 64-bit CRC 
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The Barrett Reduction Algorithm is shown in Algorithm 2.  

Algorithm 2. Barrett Reduction Algorithm for a degree-64 polynomial modulus 
(polynomials defined over GF(2)) 

Input: degree-127 polynomial R(x), degree-64 polynomial P(x), µ = (x128 / 

P(x)) 

Output: C(x) = R(x) mod P(x) 

Step 1: T1(x) =  (R(x)/x64)  • µ  

Step 2: T2(x) =  (T1(x)/x64)  • P(x)  

Step 3: C(x) = R(x)  T2(x) mod x64 

After step 3, the 64 high-order coefficients of C will be 0.  

Note that since P(x) and µ are 65 bits in length, the carry-less multiplication 
has to be performed with a PCLMULQDQ and an XOR operation. 

Bit-Reflection 

Some CRC applications work on bit-reflected data. In such cases, our 
methodology can be efficiently applied in a bit-reflected domain without a 

need for back and forth bit reflections. This is possible, because PCLMULQDQ 
and PXOR operations are bit-order agnostic. However, the 127-bit result of 
carry-less multiplication of two 64-bit numbers is stored into the least 
significant 127-bits of the 128-bit XMM register. In the bit-reflected domain, 
a left-shift is needed after a carry-less multiplication in order to preserve the 
correct result. This can be described by the following property of carry-less 

multiplication of bit-reflected operations:  

(bit-reflected(A) •bit-reflected(B)) << 1 = bit-reflected(A•B) 

where the bit-reflection on A and B is performed on their size (n bits) and 
the bit-reflection on the product is performed over 2n bits. 

One possible optimization is to do the left-shift on one of the multiplicands 
prior to the multiplication of bit-reflected operands. In the folding methods 
described above for 32-bit CRC, multiplications take place between the data 
and a pre-computed (32-bit) constant. If this constant is generated in 
already left-shifted form, carry-less multiplication of bit-reflected operands 
will compute the correct result without a need for a following left-shift on 

the result. With this optimization, the reflected constant will be 33 bits in 
length as shown in Figure 11. Note that we need to compute the folding 
constants differently, such that when we perform a bit-reflection, the 
constants occupy least-significant-bit (lsb) positions (to permit us to perform 
a left-shift operation). The example for bit-reflected application shown in the 
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next sub-section illustrates this (contrast it with the previous example for 

normal bit ordering of IEEE 802.3). 

Another way to accomplish the same efficiency during folding is to compute 
the constants differently and keep the size of the reflected constant the 
same i.e., 32 bits. Consider the example of k4 = x128 mod P(x); to 
generate the equivalent constant for reflected operations, we could instead 

generate k4 = x128-1 mod P(x), in bit-reflected form – the PCLMULQDQ 
operation in bit-reflected domain scales the product by x, compensating for 
the “-1” in the exponent of the new constant. Thus no shifting of the product 
will be needed. In either method, we can reuse the same code (with 
different constants). For the rest of the discussion however, we focus on the 
first method. 
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Figure 11:  Carry-less Multiplication on Bit-Reflected Data 
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The final Barrett reduction of the CRC for the bit-reflected input has the 

same steps as the normal version. The only difference will be the alignment 
of the data and the requirement to select data from different parts of the 
intermediate results. Figure 12 illustrates the Barrett steps for normal and 
bit-reflected inputs and shows the difference. The notation X’ denotes a bit-
reflected form of X – formally defined as X’[i] = X[n-1-i] for i=0 through (n-
1), where X has n bits and [i] refers to the ith least-significant bit of X. 

Figure 12. Polynomial (GF(2)) Barrett Reduction steps for normal and bit-
reflected input 
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Example of 32-bit CRC with bit-reflected data (gzip CRC) 

The above methods can be applied as an example to the gzip CRC that 

operates on bit-reflected data. These are the constants that need to be 
computed for this example. Note that the constants need to be computed 
using the formulae given in this example. P(x)’ and µ’ are 33-bit reflected 
constants, whereas other constants are 64-bit reflections. 
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Bit-reflected constants:  

• P(x)’ = 0x1DB710641; 

•  k1’ = (x4*128+32 mod P(x) << 32)’ << 1 = 0x154442bd4 

•  k2’ = (x4*128-32 mod P(x)  << 32)’ << 1 = 0x1c6e41596 

•  k3’ = (x128+32 mod P(x)  << 32)’ << 1 = 0x1751997d0 

•  k4’ = (x128-32  mod P(x)  << 32)’ << 1 = 0x0ccaa009e 

•  k5’ = (x64  mod P(x)  << 32)’ << 1 = 0x163cd6124 

•  k6’ = (x32  mod P(x)  << 32)’ << 1 = 0x1db710640 

•  ’ = (x64/P(x))’    =  0x1F7011641 

 

§ 

Conclusion 

We presented a fast and efficient method of computing CRC on IA 
processors with generic polynomials using the carry-less multiplication 

instruction – PCLMULQDQ. This instruction has been introduced in the 
Westmere processor. 

Instead of reducing the entire message with traditional reduction algorithms, 
we use a faster folding approach to reduce an arbitrary length buffer to a 
small fixed size to be reduced further by traditional methods such as Barrett 

reduction over GF(2) polynomials. 

A Parallelized folding approach is used to maximize the throughput of 
PCLMULQDQ instructions. We show how to do this efficiently for data buffers 
of arbitrary length. This method enables good performance on a range of IA 
cores that will support the PCLMULQDQ instruction. 

Using PCLMULQDQ, we can compute CRC for any polynomial without the 
need for large lookup-tables as required by conventional software methods. 
The methods for computing CRC described in this paper will also permit 
much faster computations than the best lookup-table based software 
approaches. 
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